RAWFILL WP T1
Enhanced Inventory Framework
Deliverable 4.1
List of Enhanced Landfill Inventory Framework Indicators

June 2018

Prepared by ATRASOL sprl
www.atrasol.eu
Interreg North – Ouest Europe (NWE) VB 2014 - 2020
Project: NWE377 RAWFILL
Title: Supporting a new circular economy for RAW materials recovered from landFILLS

Table

ACRONYMS AND DEFINITIONS .. 3
PRESENTATION OF RAWFILL.. 5
PRESENTATION OF WP T1 “ENHANCED INVENTORY FRAMEWORK” .. 6
Existing inventories and landfill mining experiences ... 6
SWOT analysis of landfills characterisation methods ... 7
The ELIF structure .. 7
LANDFILL MINING PERSPECTIVES ... 8
A T.1.4. ELIF STRUCTURE AND RELEVANT FIELDS .. 11
Partners involved .. 11
ELIF description .. 11
Data accuracy .. 13
Data source ... 13
Generic information ... 13
Regulatory information ... 14
Landfill ID card .. 15
Surroundings .. 18
Landfill geometry ... 21
Landfill Wastes .. 22
ACRONYMS AND DEFINITIONS

COCOON: “Consortium for a Coherent European Landfill Management Strategy”, an INTERREG Europe-funded project, whose objective is to develop, integrate and improve relevant policy instruments, while increasing subsidies through operational programs for landfill mining projects, https://www.interregeurope.eu/cocoon/

DST: “Decision Support Tool”, a tool that will rank landfills regarding landfill mining opportunities. The ranking is based on information following ELIF structure. It will operate at 2 levels: “Selection” (a first level of quick screening to identify landfills with a priori interesting potential but which need further historical investigations and geophysical survey) and “Ranking” (a prioritization tool to rank pre-selected and fully investigated landfills of economic interest for raw material recovery purposes).

ELFM: “Enhanced Landfill Mining”, the safe exploration, conditioning, excavation and integrated valorisation of (historic, present and/or future) landfilled waste streams as both materials (Waste-to-Material, WtM) and energy (Waste-to-Energy, WtE), using innovative transformation technologies and respecting the most stringent social and ecological criteria).

ELIF: “Enhanced Landfill Inventory Framework”, a landfill inventory structure that is focused on information regarding resources that can be extracted from a landfill (materials, energy carriers and land). The ELIF is used to describe landfills not only in terms of environmental and risk issues, but focuses on the quality and the quantity of dormant materials lying on them, in order to supply relevant data for stakeholders involved in ELFM projects.

LFM: “Landfill Mining”, the safe exploration, conditioning, excavation and integrated valorisation of (historic, present and/or future) landfilled waste streams as both materials (Waste-to-Material, W2M) and energy (Waste-to-Energy, W2E), without specification of technologies.

RAWFILL: “Supporting a new circular economy for RAW materials recovered from landFILLs”, an INTERREG North-West Europe-funded landfill mining project, launched in March 2017, www.nweurope.eu/rawfill

RECLAIM: “Landfill mining pilot application for recovery of invaluable metals, materials, land and energy”, project funded by the European Commission through Life+ 2012 vehicle, contract LIFE12 ENV/GR/000427
SMART GROUND: “SMART data collection and inteGration platform to enhance availability and accessibility of data and information in the eU territory on secondary raw materials”, an H2020-funded project aiming at improving the availability and accessibility of data and information on SRM (Secondary Raw Materials) in the EU territory, while creating collaborations and synergies among the different stakeholders involved in the SRM value chain, www.smart-ground.eu

UXO: unexploded ordnance (grenades, bombs, etc.) coming from warfare, military exercises and dumping of ammunitions, that can be found in some landfills or below the ground level.
PRESENTATION OF RAWFILL

RAWFILL (“Supporting a new circular economy for RAW materials recovered from landFILLs”) is an INTERREG EU-funded landfill mining project, gathering partners and associated partners of North-West Europe regions and supported by EURELCO. RAWFILL was launched in March 2017 and will end in March 2020.

The ultimate goal of RAWFILL is to allow North West Europe public & private landfills owners & managers to implement profitable resource-recovery driven landfill mining and enhanced landfill mining projects, hereunder named LFM or ELFM according to the context.

RAWFILL develops a cost-effective standard framework for creating landfill inventories (ELIF) based on existing experiences, an innovative landfill characterization methodology by geophysical imaging and guided sampling and an associated Decision Support Tool (DST) to allow smart ELFM project prioritization. The whole concept will be demonstrated in 2 pilot sites in Flanders (Meerhout) and France (Les Champs Jouault). Additional geophysics calibration operations will take place on a few other landfills where specific information is available.

More information about RAWFILL and its progress reports can be found at the project site: www.nweurope.eu/rawfill

The ELIF will be used to describe landfills not only in terms of environmental and risk issues, but will focus on the quality and the quantity of dormant materials lying on them, in order to supply relevant data for stakeholders involved in ELFM projects.

The ELIF is the basis for the DST ranking tool and so a prerequisite to assess feasibility, business plan & business cases for launching profitable projects.

The DST is a ranking tool that will allow ELFM projects prioritization based on a set of suitable physical, chemical, environmental, technical and social information. It will integrate the multiple aspects involved in ELFM projects, i.e. economic, technical, environmental & social factors in order to compare and classify landfills regarding their ELFM interest.
PRESENTATION OF WP T1 “ENHANCED INVENTORY FRAMEWORK”

Existing inventories and landfill mining experiences

One main challenge for stakeholders involved in ELFM operations is to evaluate the project profitability risk based on quantity and quality of dormant resources that can be excavated and recovered from a particular landfill site. Related reliable decision elements are missing in most of the landfill inventories we have reviewed, covering NWE region. The most advanced inventories describe landfills in terms of environmental and risk issues, but give no way to evaluate, even roughly, their dormant resources potential. In most cases, even the volume of waste remain unknown and only a very general information is given about waste type (which is very often a mixture of domestic, industrial and construction wastes).

A T.1.1 analyses current situation in NWE countries by collecting structures of public & private available LFs databases/inventories. Supported by the WP Leader, each partner collects data from its region, while the WP leader uses the EURELCO network to gather additional information.

A short review of landfill mining experiences (WP T1 – Activity A T.1.2) focused on the methodology applied to evaluate the landfill resources potential, shows that, in the studied cases, no specific particular attention was given to the precise evaluation of resources. Other important factors lead to the decision of mining the landfill, as solving an environmental issue, recovering valuable land or performing feasibility tests. This situation is expected to change as far as the ELFM market will grow and, within North-West Europe, because some mineral resources will request more attention. For sure, in a high density populated area, the economic value of the land that can be reclaimed through an ELFM project will remain a key decision factor.

A T.1.2 performs a benchmark analysis of the existing LFM initiatives (+/- 20 in Europe), including legal, technical & economic issues, focusing on how the raw material content of the LFs was estimated, the accuracy of the evaluation and its economic impact in the (positive or negative) results.

Regarding existing information, the level of accuracy of some data is sometimes difficult to estimate, for example the indicated surface of the landfill which is mixed with the total surface of the site, the volume of waste which can be just a draft estimation based on a mean height, the type of waste which remain generic in uncontrolled landfills, etc. As this precision is very important for launching a LFM feasibility study, our ELIF should specify for each DST-relevant field an accuracy...
estimation that will be taken into account for the ranking. The simplest one will be a classification as “poor/average/good/unknown”.

SWOT analysis of landfills characterisation methods

A deep and relevant knowledge of what lies in landfills is essential: what are the waste, in which quantities and under which form? How can they be excavated? Which precautions should be taken? The ambition of RAWFILL is to give some suitable answers to these questions, by supplying a whole integrated methodology taking into account historical studies of the landfills, geophysical investigations, guides sampling and relevant waste analysis.

A T.1.3 analyses available technical & financial aspects of classical landfill and waste characterization methods by boreholes, trenches and former geophysics experiences. The best practices results will be used to fill the ELIF related fields, tested in the 2 Investment WPs, and highlighted through the WP T3 Demonstration. Financial data will also be gathered to show the value-for-money of the geophysics vs. traditional characterization methods.

The ELIF structure

Analysis of A T.1.1 and A T.1.2 will lead to establish a list of suitable fields for our ELIF, which is part of the 3rd activity of the Work Package and is the subject of the present document:

A T.1.4 supplies the enhanced ELIF, i.e. a database structure taking into account LFs resources, under the form of 1) a list of fields (“indicators”) and 2) a spreadsheet (“tool”). Only the first deliverable “indicators” is presented here.
LANDFILL MINING PERSPECTIVES

The figure hereunder illustrates the change of paradigm regarding landfills that emerges now in many parts of the world. Landfills are not more seen as final deposits that will remain indefinitely and become integrated parts of the landscape, generating negative (sometimes positive\(^1\)) environmental impacts and negative health issues.

Landfills are seen as deposits of dormant anthropogenic resources or reserves as materials, secondary fuels and valuable land.

The difference between resources and reserves is very important in the RAWFILL approach: resources are reasonable prospects for eventual economic extraction in the foreseeable future while reserves are resources with current economic extraction possible, without specifying any timeline.

In any case, a deep knowledge of what lies in the landfill remains important, even if we are quite sure that some landfills will not be short term treated. That’s why the RAWFILL ELIF has to be developed now and completed in the next years, even if the market is only emerging.

Regarding resource consumption, we will just develop one example, but many others can be found. The production price of a common important metal as Aluminium reaches a stable level as shown hereunder:

\(^1\) Parts of the territory, generating no significant contamination, that can be given back to nature after a full or light rehabilitation, or no rehabilitation at all, sheltering specific fauna and flora, walking areas, etc.
But the consumption increases constantly:

The primary Aluminium production within EU is quite stable. One third comes from recycling, with a stabilized level and 51% come from imports, this last part still increasing because of low prices from foreign suppliers.
Should the import sources become less available or more expensive for any geopolitical reasons, there will be a serious gap to overcome. Increasing primary production from bauxite is difficult and expensive, absorbing huge quantity of electricity and leading to mining environmental problems. Increasing recycling is an option if alternative sources of metals can be found. Precisely, landfills contain a large part of the metal produced in the past.

So, evaluating reserves lying in landfill may be of strategic importance.

Last but not least, reclaiming land within NWE is also a matter of great concerns in some regions.

Then, an emergence of ELFM market will lead to improved technologies for digging, sorting and treating the waste so that the profitability of a landfill mining operation will increase by reducing operation costs.

Last but not least, adapted ELFM oriented legislations should be developed in the future in order to facilitate ELFM operations.
A T.1.4. ELIF STRUCTURE AND RELEVANT FIELDS

Partners involved

Lead Partner

• Atrasol sprl

Partners involved

• BAV
• NERC
• SAS Les Champs Jouault
• SPAQuE
• OVAM
• ULiège

ELIF description

ELIF: “Enhanced Landfill Inventory Framework”, is a landfill inventory structure focused on information regarding resources that can be extracted from a landfill (materials, energy carriers and land).

ELIF is used to describe landfills not only in terms of environmental and risk issues, but focuses on the quality and the quantity of dormant materials lying on them, in order to supply relevant data for stakeholders involved in ELFM projects.

This approach is innovative, as no known landfill inventory among these analysed contains such ELFM-driven information.
There are finally 3 main drivers related to a decision to launch an ELFM project:

- An economic driver related to material valorisation and land reclaiming
- A territorial strategy driver related to the planned local/regional land development
- An environmental driver related to environmental and human health issues

ELIF structure will take these drivers into account, although its structure will be proposed in 4 chapters: landfill ID Card, surroundings, landfill geometry and waste.

ELIF is the basis for the DST ranking tool and so a prerequisite to assess feasibility, business plan & business cases for launching profitable projects. DST is a ranking tool that will allow ELFM projects prioritization based on a set of suitable physical, chemical, environmental, technical and social information. It will integrate the multiple aspects involved in ELFM projects, i.e. economic, technical, environmental & social factors in order to compare and classify landfills regarding their ELFM interest.

This ELIF is based on results of previous WP T1 deliverables:
- A T.1.1 which analyses current situation in NWE countries by collecting structures of public & private available LFs databases/inventories,
- A T.1.2, a short review of landfill mining experiences focused on the methodology applied to evaluate the landfill resources potential.

Here is the structure of ELIF:

<table>
<thead>
<tr>
<th>Section</th>
<th>Definition</th>
<th>Fields examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Generic info</td>
<td>Information about datasheet creation and maintenance</td>
<td>Date of creation, updating and who is responsible</td>
</tr>
<tr>
<td>1. Landfill ID Card</td>
<td>All administrative information about a given landfill</td>
<td>Name, location, owner, operator, monitoring, aftercare, legal status, permits</td>
</tr>
<tr>
<td>2. Surroundings</td>
<td>All relevant data about the landfill’s surroundings</td>
<td>Land planning, territorial strategy, current use, specific risks, geology, groundwater, access</td>
</tr>
<tr>
<td>3. Geometry</td>
<td>Landfill geometry, regardless wastes information</td>
<td>Surface, volume, depths, stability, bottom, capping, biogas network</td>
</tr>
</tbody>
</table>
4. Wastes

Specific information about the landfill’s waste streams
Types, density, water and gas content, temperature, estimated composition from RDM

ELIF divisions and most representative fields

Data accuracy

Regarding existing information, the level of accuracy of some data is sometimes difficult to estimate, for example the indicated surface of the landfill which can be mixed with the total surface of the site, the volume of waste which can be just a draft estimation based on a mean height and a given surface, the type of waste which remain generic in uncontrolled landfills, etc. As this precision is very important for launching an ELFM feasibility study, our ELIF should specify for each DST-relevant field an accuracy estimation that will be taken into account for the ranking. The simplest one will be a classification as “poor / average / good/ unknown”. To facilitate the reading, we will not precise this accuracy level indicator when describing each field in the present document.

Dates are supposed to come from relevant sources and will not be associated with an accuracy estimation.

Data source

For some fields, it will be very important to precise the origin of the information, and specify if this information has been measured with some relative precision or simply estimated or is known as found in documents, without specifying their origin. Data measured by the responsible of the database will be considered as the most valid ones.

Generic information

ELIF datasheet responsible: name and position of the person responsible for the validation of the datasheet
- Name
- Position

Creation date: date of creation of the datasheet
- Date (dd/mm/year)

Date of updating: date of last updating of the data sheet. “Updating” means either completion of the data sheet with missing information or modification of existing data. We assume that regular backups ensure that all previous versions of the data sheets still exist somewhere. This way allows to avoid to keep log files.
- Date (dd/mm/year)
Regulatory information

This section gathers all local/regional/national regulatory information applicable for the landfill described in the data sheet, when it has an impact of a potential ELFM project. The goal is not to be very detailed, but to mention the existence of relevant information that the stakeholder can consult.

Regional policy encouraging ELFM: list of public policies applicable in the region covered by the database, having an impact on a potential ELFM project. Here are some examples: green policies, circular economy and specific recycling policies, end-of-waste, declassification of buried waste that are not more seen as production residue, geolocation of the trucks, waste traceability...

- Text file

Regional incentives encouraging ELFM: list of public incentives for ELFM projects. Example: tax exemption or tax reduction for approved ELFM projects

- Text file

Dates of landfill ban: dates of regional landfill restriction for some specific waste streams. A restriction can be a *limitation* (examples: increasing taxes or beginning a selective collection with sufficient coverage) or a *total ban* (no more organic waste in domestic landfills from a given time).

- Name of the stream (metals, organics, hazardous waste, EOL vehicles...)
- Regional code of the restricted stream (when exists)
- Date of applicability of the restriction
- Type of restriction: Boolean: restriction/ban

Site specific ELFM facilitation procedures: name and reference of legislative systems that can encourage ELFM operational projects on this particular landfill site, with their expiration date. Examples: a brownfield covenant signed with local government (Flanders) or a soil management covenant (Wallonia)

- Text file (Reference, signature date, expiration date, summary)

Regional authorization for in-situ relandfilling: reference of legislative text authorizing/forbidding relandfilling of ultimate waste in the same landfill

- Text file

Regional authorization for relandfilling at another landfill: reference of legislative text authorizing/forbidding landfilling of ultimate waste coming from this landfill in other landfills. Conditions (nature of waste, tax level, tax exemption) must be specified.
Landfill ID card

This section gathers all administrative information related to the landfill described in the data sheet.

Landfill name and synonyms: usual name of the landfill or the place where it is located. As the landfill may appear under various names in various documents, all known denominations must be described in order to facilitate historical searches.
- Main denomination: text file
- Synonym 1: text file
- Synonym 2: text file
- Synonym 3: text file

Landfill reference: identification of the landfill in its original database or file
- Text file (to be general enough)

ELIF reference: identification of the landfill within an ELIF database. We suggest to use a common identification system in order to be able to share data between all NWE regions and propose to use the Classification of Territorial Units for Statistics Code incremented with an order number. The CTUS (French: NUTS = Nomenclature des Unités Territoriales Statistiques) is an EU geocode standard for referencing the subdivisions of countries for statistical purposes. Example: the first landfill encoded in ELIF and located in Walloon Brabant will be named BE31001, the next one BE31002, etc.

Landfill coordinates: geographical coordinates of the center/top of the landfill in the current system used by the regional authorities. The most common worldwide system is the WGS 84 (World Geodetic System), and the EU GALILEO positioning system will be fully operational around 2020.
- X
- Y
- Z
- Reference of the system

Administration in charge: identification of the public administrative unit in charge of the follow-up of this landfill (permitting, control, monitoring, post-management/aftercare period). Example in Wallonia: if the landfill is under operation, DGO3. If the landfill is abandoned, SPAQuE.
Ownership: name of the current owner(s) of the landfill and its (their) legal status. This information is important to evaluate the complexity of developing an ELFM project. Details of ownership will not be described here, only the name of the owners.

- Name of owner 1
- Status 1: public, private, both, unknown
- Name of owner 2
- Status 2: public, private, both, unknown
- Name of owner 3
- Status 3: public, private, both, unknown
- Name of owner 4
- Status 4: public, private, both, unknown
- Name of owner 5
- Status 5: public, private, both, unknown

Landfill operator(s): name of the operator(s) of the landfill with the date of its (their) intervention. Up to 5 operators are allowed. Operators may operate successively or simultaneously.

- Name of operator 1
- Date of beginning
- Date of end
- Name of operator 2
- Date of beginning
- Date of end
- Name of operator 3
- Date of beginning
- Date of end
- Name of operator 4
- Date of beginning
- Date of end
- Name of operator 5
- Date of beginning
- Date of end

Legal status of the landfill: legal status, for which we propose the following classification: legal covered by a permit, legal but without any permit, illegal, unknown or specific (in case of special status)

- List: Legal status

Permits: list of permits and authorisations with their dates and references. No more detail regarding permits will be given here.

- Text file: reference, date of authorisation, expiration date, nature of permit
Landfill type: landfill class according to EU Directive (Hazardous, Non-hazardous, Inert) when the classification is applicable. Please note that the main type of waste that will be encountered in the landfill is described below with more detail.

- List: Hazardous/Not Hazardous/Inert/Not applicable

Landfill status and dates: current status of the landfill, with begin and end dates. Several answers are possible, i.e. a landfill can be controlled (construction respecting legal requirements: watertightness, drainage, etc.) and still in operation or closed.

- Boolean: controlled/wild dump
- Boolean: abandoned/still in operation at data sheet date
- Boolean: rehabilitated/not rehabilitated
- Boolean: necessary to rehabilitate/not necessary
- Date: Begin of landfill operation
- Date: End of landfill operation
- Date: Begin of rehabilitation
- Date: End of rehabilitation
- Date: Begin of aftercare period
- Date: End of aftercare period

Landfill monitoring: information about the monitoring of the landfill by a public or private body. When monitored, the landfill can be either under operation or closed.

- Boolean: monitored/not monitored at data sheet date
- Text file: company/administration in charge of the monitoring
- Date: begin of monitoring
- Date: end of monitoring

Fence/site protection: information about the access of the landfill, in order to identify risks from exposure to waste, biogas or leachate or risk of wild dumping by people who can access the site for various reasons

- Text file

Buried Volume: evaluation of the waste volume buried in the landfill at data sheet date. Specify how the volume, which is a very important information, has been measured or simply estimated;

- Number (m³)
- Boolean: measured/estimated
- Text file: method used for obtaining the volume

Remaining Volume: estimation of volume available to receive new waste (i.e. ultimate waste from another ELFM project) or materials (i.e. soil for shaping the final landfill after ELFM operations)

- Number (m³) – by default: 0
- Boolean: measured/estimated
- Text file: method used for obtaining the data

Remediation costs: estimation of rehabilitation costs in € at date of data sheet. Rehabilitation can be temporary or final, so the given estimation must cover both of them
 - Number (€ excluding taxes, VAT, etc.) – if unknown: 0

Aftercare costs: estimation of post-management costs in € at date of data sheet.
 - Number (€ excluding taxes, VAT, etc.) – if unknown: 0

Warranties given: warranties given for rehabilitation & aftercare costs in € at date of data sheet. This data can be found in permits.
 - Number (€ excluding taxes, VAT, etc.) – if unknown: 0

Studies: list of available studies related to the landfill, with references, date of completion and name of author. Specify if the study is public or kept confidential. Specify where and how the studies can be delivered or consulted. Studies can include press articles, pictures, maps, advice of official bodies, environmental documents...
 - Text file

Sampling: list of waste samples extracted from the landfill, with references, date of completion and name of author. Specify the origin of the samples (from surface, small or large boreholes, trenches, pits) and describe the performed analysis (chemical, physical, material-recovery oriented)
 - Text file

Surroundings

This section is related to the surroundings of the landfill, mainly its physical environment and sustainability aspects. Its gathers also some relevant information for launching an ELFM project.

Land planning: official land use of the landfill and the immediate surroundings (1 Km away from the site borders) regarding the national/regional legislation (industrial, agricultural, housing...)
 - Text file

Current use: current use of the site of the landfill, regardless its official use: None, Cultivation, Natural reforestation, Use by local people (specify for which use), Use for renewable energies, Others.
 - List
• Free text for specifications

Territorial strategy aspects: interest of the landfill site for the territorial development (i.e. located in an area affected by a territorial tool implemented or planned). In addition to the regional tools, each city or town can develop its own tools for redevelopment of the territory. Specify the references of the tools, if a redevelopment project of the area is planned and when it is expected to be realized. Example: urban redevelopment plan around the landfill from 2025.

- Text file

Occupation: list the various types of land use of land within a radius of 1km around the landfill center (Houses, Industrial, Social Equipment, Agriculture, Forest, Green spaces)

- List (several possible answers)

Land pressure: estimation of the development potential of the landfill area. Local estimated land price if possible. Criteria: Price of housing, prices of the land, average income per capita, population density, unemployment rates, demographic predictions...Land pressure may be high, even if no specific territorial strategy exist. A number (1, 2 or 3) can also be given according to Bertaud’s model\(^2\) used by OVAM.

- Text file
- Number

General Risk evaluation: assessment of the main specific potential hazard presented by the landfill: Flood, Fire, Stability, Person accident (if the landfill is not fenced and easy to access...), Other. Please note that flooding may be evaluated regarding climate changes aspects. Risk related to groundwater are described hereunder in a specific field “Groundwater vulnerability”.

- List (multiple answers possible)

Environmental issues: known environmental issues associated with the existence of the landfill.

- Specific environmental issue (not related to water and geology)
 - Boolean: Yes/No
 - Text file: short relevant description of the issue

- Surface water contamination
 - Contaminated/Not contaminated
 - Measured/Estimated
 - Analysis available/Not available
 - High risk/Medium risk/No risk/Unknown

\(^2\) See «Spatial distribution of land prices and densities», Alain Bertaud, Marron Insitute of Urban Management. This aspect will be developed in DST WP and Landfill Miner Guide
Text file: short relevant description of the issue

Geological context
- Highly permeable soils or rocks / Medium permeable soils or rocks / Not permeable (specified for the soil or rocks below the landfill)

Groundwater vulnerability
- Average level of upper groundwater table
- Contaminated / Not contaminated groundwater (whatever the cause of the contamination)
- Measured / Estimated
- Analysis available / Not available
- Risk of contamination coming from the landfill: High risk / Medium risk / No risk / Unknown
- Text file: short relevant description of the issue
- Exploited groundwater / Not exploited
- Distance to a groundwater protection zone (m) – 0 if none around 10 Km

Social support: identification of wishes of local residents or associations to see the landfill removed or reduced. Example: is there a resident committee? A project for landfill remediation? Information can be found through press releases, blogs, publications, etc.
- Boolean: Yes / No
- Text file

Biodiversity: is there a specific biodiversity to protect on the landfill site?
- Boolean: Yes / No
- Text file
- Distance to the site of the nearest specific protected area (Natura 2000, etc.)

Access for landfill mining operations: evaluation of the accessibility conditions (for trucks and equipment) to the landfill. Distances are real distances and not as the crow flies.
- Heavy trucks: Yes / No / text file for explanations
- Distance to main road (m)
- Distance to nearest harbor (m)
- Distance to waterways (m)
- Distance to rail station (m)

Facilities for landfill mining operations: distance to a waste treatment unit or another operational landfill that can receive ultimate waste from an ELFM project (< 30, < 50, < 100 Km)

3 There are other ways to express vulnerability. For example in terms of time for a contamination to reach a well, in geometrical form taken into account anisotropy of horizontal (and vertical) permeability, etc.
• Incineration plant
• Cement factories
• Waste treatment plant (in general)
• Landfill for hazardous waste
• Landfill for not hazardous waste

Leachates treatment plant on site: description of the leachate treatment plant related to the landfill
- List: Exists/does not exist/unknown
- Boolean: Operational/To be rehabilitated
- Text file

Leachates treatment plant nearby: description of the nearest operational treatment plant that could receive leachates from the landfill (<10, < 20, <50 Km)
- Text file
- Distance (m)

Landfill geometry

Regardless the nature of waste, this section describes the geometry of the landfill and the associated construction elements that can be found on it.

Landfill Morphology: shape of the landfill and its integration in the surrounding area: Mound/tumulus/hip hill, Depression/quarry, Open dump (waste spread on the ground with limited height, i.e. < 3 m), Slope/along a valley, Lagoon/pond
- List

Surface: we distinguish here the area occupied by waste and the whole area of the landfill site that can be quite different. Origin of the data and the way it has been evaluated is important for further analysis.
- Total surface of the site (m²)
- Text file
- Total surface occupied by waste (m²)
- Text file

Waste heights/depth: evaluation of the depth of the landfill from surface to natural ground. Origin of the data and the way it has been evaluated is important for further analysis.
- Maximal (m)
- Minimal (m)
- Average (most present) height of wastes (m)
Fragmentation: this field is related to the waste fragmentation: are they located in one single place or spread in several locations?
- Boolean: In one place/spread

Stability of the waste mass: this information is related to the probability to encounter any issue related to the stability of the whole mass of waste. “Slope” and “water table” can be measured physically while “risk” will be an appreciation hanging on the nature and age of waste, their thickness, their slope, the presence of water, field observations and experience of similar cases
- Slopes: steep slopes (more than 20° from horizontal)/no steep slope
- Water table: presence of a water table in the landfill/no water table/unknown
- Risk appreciation for future excavation works: high/medium/low/unknown

Top layer: type and composition of the top layer of the landfill: Visible waste (no capping at all), Earth capping, Synthetic capping (covered by earth), Watertightness layer, Drainage layer, Plantation, Wild revegetation
- List
- Boolean: watertightness/No specific watertightness layer
- Boolean: rainwater drainage/No specific rainwater drainage layer
- Boolean: gas drainage/No specific gas drainage layer

Bottom layer: type and composition of the bottom layer of the landfill: None, Clay, Geomembrane, Clay+Geomembrane, Gravels, Sand, Sand + Gravels, Unknown
- List (1 answer for watertightness, 1 answer for drainage layer)
- Boolean: watertightness (clay and/or geomembrane)/No specific watertightness layer
- Boolean: leachate drainage/No specific leachate drainage layer

Emissions to air: existence of (bio)gas and/or dust emissions
- List: measured/probable/possible/none/unknown

Biogas aerial collection system: all information about a gas collection system placed in the landfill, especially if aerial system can hinder geophysics works.
- Yes/No
- Text file for short description: number of boreholes, trenches, lines of pipes, etc.
- Pipes running in surface/Pipe buried/No pipes
- Abandoned/In operation
- Start date/end date
- Flare or engine/No valorisation system

This section gathers all suitable information about the wastes buried in the landfill.
Dates: dates of begin/end of landfill operations/rehabilitation
- Date (beginning of landfiling)
- Date (end of landfiling)
- Date (beginning of rehabilitation operations)
- Date (end of rehabilitation operations)
- Date (beginning of gas collection)
- Date (end of gas collection)

Main waste type: main known waste stream according to common definitions (Municipal - household - domestic waste/Inert waste from construction, demolition or specific waste from industry/Industrial Waste/Military waste/Mixed waste)
- List

Specific waste stream: specific waste streams as Dredging sludges/ Water purification sludges / Gypsum/ Fly ashes / Asbestos / Slags/ Mining waste/ Lime/ Contaminated soils/ Others (free field). Specify the EWC (European waste code) if applicable and % of the total volume of the landfill occupied by this specific stream. Specify how this % has been fixed (measured/evaluated/unknown)
- List + EWC + % + specification
- Free field + EWC + % + specification

Hazardous waste: this field describes the probability to encounter hazardous waste in the landfill (Assesses/Probable/Possible/None/Unknown) and a justification of the selection
- List

Radioactive waste: this field describes the probability to encounter radioactive waste in the landfill (Assesses/Probable/Possible/None/Unknown) and a justification of the selection
- List

Hazardous hospital waste: this field describes the probability to encounter hazardous hospital or medical waste in the landfill (Assesses/Probable/Possible/None/Unknown) and a justification of the selection
- List

Hazardous military waste: this field describes the probability to encounter hazardous military waste in the landfill (Assesses/Probable/Possible/None/Unknown) and a justification of the selection. The presence of UXO (unexploded ordnance) presenting

4 Sources may be medical radioactive elements, or some lightning rods with an head containing Radium 226 or Americium 241, produced in the 80s
a tremendous risk must also be precised. UXO (grenades, bombs, etc.) comes from warfare, military exercises and dumping of ammunitions.

Asbestos: this field describes the probability to encounter free asbestos in the landfill (Assesses/Probable/Possible/None/Unknown) and a justification of the selection
- List

Main physical state: this field specifies main physical state of the waste: solid waste/powdered waste/ sludge/liquid
- List

Leachates: indicates presence of leachates within the landfill
- List (Yes/No/unknown)

Daily cover: this field specifies if a daily cover was used during landfill operation, the type of cover (organic, mineral, synthetic) and its thickness
- Boolean: Yes/no
- List: Type of cover: organic, mineral, synthetic
- Text file: Origin of cover products (if organic or mineral)
- % of the waste volume occupied by the cover (0 if synthetic)

Waste composition: we assume that the landfill can be described with maximum 5 contrasted layers, following the RDM “resource distribution model” designed by RAWFILL historical and geophysical survey. A 2D or 3D map should be included to identify the different zones for which a lot of properties are precised.
- Height of the layer (m)
- Volume of the layer (m³)
- Average density of the waste in the layer (T/m³)
- Tons buried (T)
- Main physical state (solid/powdered/sludge/liquid)
- Waste homogeneity (see afterwards)
- % fine materials (%) (i.e. materials lower than 40 or 50 mm)
- Main type of waste
- Gas content (%)
- Water content (%)
- Average T° (°C)
- Presence of a water table (Yes/no)
- Begin landfilling (date)
- End landfilling (date)
- Estimated composition (free text)⁵

⁵ We propose a description guideline in RAWFILL - SWOT analysis of landfill characterisation methods deliverable
• Estimated recyclability potential (free text)6
• Source and accuracy of this information (free text)

Form: table as proposed below

Waste homogeneity: this field is given for any of the 5 waste layers and specifies if each layer can be considered as homogeneous or heterogeneous, following the definition given in the RAWFILL SWOT analysis deliverable:

<table>
<thead>
<tr>
<th></th>
<th>Homogeneous</th>
<th>Heterogeneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>At large scale</td>
<td>Only one layer of waste can be distinguished:</td>
<td>More than one layer of waste can be distinguished, each layer has a relatively homogeneous composition</td>
</tr>
<tr>
<td>(macro)</td>
<td>- One single waste stream (mono-landfill)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Several waste streams, totally mixed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any taken sample will have a similar composition</td>
<td></td>
</tr>
<tr>
<td>At small scale</td>
<td>Only one waste stream can be found in any sample</td>
<td>More than one waste stream can be found in any sample</td>
</tr>
<tr>
<td>(micro)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- At large scale: Boolean (homogeneous/not homogeneous)
- At small scale: Boolean (only one stream/more than one stream)

Form: table as proposed below

6 The definition of this field is still under progress
<table>
<thead>
<tr>
<th>Waste</th>
<th>Height (m)</th>
<th>Volume (m³)</th>
<th>Density (T/m³)</th>
<th>Tons (T)</th>
<th>Physical state</th>
<th>Homogeneity %</th>
<th>Fines</th>
<th>Main type</th>
<th>Gas content</th>
<th>Water content</th>
<th>T° (°C)</th>
<th>Water table</th>
<th>Begin landfilling</th>
<th>End landfilling</th>
<th>Composition</th>
<th>Recyclability potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td>Zone 2</td>
<td></td>
</tr>
<tr>
<td>Zone 3</td>
<td></td>
</tr>
<tr>
<td>Zone 4</td>
<td></td>
</tr>
<tr>
<td>Zone 5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Description of the 5 layers (2D or 3D image)

Source of information and accuracy level