
Case Studies on Transport Policy 13 (2023) 101052

Available online 22 July 2023
2213-624X/© 2023 World Conference on Transport Research Society. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Optimising shared electric mobility hubs: Insights from performance 
analysis and factors influencing riding demand 

Keyvan Hosseini , Agnieszka Stefaniec , Margaret O’Mahony , Brian Caulfield * 

Trinity Centre for Transport Research, Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland   

A R T I C L E  I N F O   

Keywords: 
Shared mobility 
Electric mobility 
Mobility hubs 
E-bike 
E-bike sharing system 
Data envelopment analysis 

A B S T R A C T   

In order to decarbonise the transport networks, systemic change is needed. One manifestation of this trans-
formation is shared electric mobility, seeking to curtail car usage and ownership. This current case study aims to 
measure and optimise the operational performance of shared electric mobility hubs (eHUBs). From the perfor-
mance results of eHUBs, one can get helpful insights to develop appropriate future planning and management 
policies for improving the transport chain. Incorporating data from September 2021 to October 2022, this 
research developed a novel dynamic two-stage data envelopment analysis (DEA) framework to assess the per-
formance of the eHUB network in Inverness, Scotland. In the first stage, the DEA model computes relative ef-
ficiency scores related to the operational performance of the stations. The second stage focuses on network 
analysis and examining the factors that may influence the high or low obtained performance scores. Scrupulous 
analysis shows that the population in the catchment area of the eHUBs and the weather conditions (specifically, 
temperature) are among the most important factors influencing riding demand. The study also finds a weak 
association between eHUBs efficiency and proximity to public transport stops, suggesting that electric-assist 
bikes (e-bikes, pedelecs) may not strongly complement public transport, unlike bike-sharing systems. It in-
dicates that e-bikes serve rather as a standalone mode for longer journeys. The findings of the case study can be 
used to improve sustainable mobility strategies, particularly related to e-bikes in other cities and urban areas.   

1. Introduction 

1.1. Background 

Adopting sharing economy solutions, which emphasise possessing 
less and sharing more, is one of the key strategies to tackle over-
consumption, achieving sustainability, and mitigating emissions 
(Schanes et al., 2016; Miramontes et al., 2017). Shared mobility is rec-
ognised as a sharing solution to substitute for private automobility in the 
transportation sector (Sopjani et al., 2020; Coenegrachts et al., 2021; 
Della Mura et al., 2022). This substitution may decrease traffic conges-
tion (Bösehans et al., 2021) and, if electrified, can contribute positively 
to reducing air pollution (Machado et al., 2018) and GHG emissions 
(Martin and Shaheen, 2016; Caulfield and Kehoe, 2021) in urban set-
tlements. Shared mobility can also be a beneficial tool for the progres-
sive redistribution of wealth to the more vulnerable parts of society 
underserved by existing transport provisions (Hosseini and Stefaniec, 

2023). 
Shared mobility hubs are increasingly gaining popularity and in-

vestment at research and policy levels (Rongen et al., 2022). These hubs 
offer integrated multimodal shared transport services and facilitate 
intermodal transfers by providing an array of mobility options in prox-
imity (Miramontes et al., 2017). What distinguishes them from free- 
floating car-sharing and bike-sharing systems is the specific geograph-
ical location of a hub, making multimodal trips more convenient and 
creating a sense of a designated place for travel. A fixed site can also 
provide a suitable location for installing charging infrastructure where 
shared electric vehicles can be recharged while parked (Liao and Cor-
reia, 2022). 

Whether the added value of multimodal hubs is abundant (Bösehans 
et al., 2023) or insubstantial compared to the monomodal car-sharing 
scheme (Claasen, 2020), its potential to replace private car trips 
should not be underestimated (ITF, 2018). This research focuses on 
shared electric mobility hubs (eHUBs), which are on-street locations that 
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simultaneously build on multimodal and electric mobility services. As an 
innovative pilot low-carbon mobility project, the eHUBS project1 aims 
to deploy various electric micro-mobility options, such as e-bikes, e- 
cargo bikes, and e-scooters. Currently, pilot eHUB networks are oper-
ating in ten cities in Europe. The goal of pilot projects such as the eHUBS 
project is to modify mobility behaviour in society by replacing private 
car trips with trips made by electric and micro-mobility means of 
transport. 

This work offers a unique framework for evaluating shared electric 
mobility hubs and e-bike sharing systems. The presented analysis in this 
research is informative in that it assesses the eHUB network by inves-
tigating multiple indicators, which recognises efficiency improvement 
directions within the mobility sector. The performance of eHUBs is 
examined over 12 months extending the analysis to incorporate the time 
factor. Furthermore, this study is the first to measure the performance of 
an e-bike sharing system using a data envelopment analysis (DEA) 
framework and explore the factors influencing the obtained efficiency 
scores. The dynamic slacks-based measure DEA approach (SBM) is 
selected as a suitable model to provide an informative and compre-
hensive picture of the eHUB system, which can assist mobility decision- 
makers in future developments and rearrangements. additionally, this 
study contributes to a topical issue, given the concerted efforts made by 
many governments towards shared mobility and electrifying trans-
portation. While policymakers are often sceptical about the outcomes of 
the untested new forms of mobility, this research provides evidence for 
the effective implementation of eHUB networks. Through these im-
provements and implications, the transport chain can advance toward 
implementing challenging goals of climate neutrality and reducing pri-
vate car usage and ownership. 

1.2. Previous work 

The transportation sector serves as the backbone of the modern 
economy. Due to its massive energy consumption, waste production, and 
emission generation, it is necessary to appraise the efficiency and sus-
tainability of different segments and aspects of this sector. Since DEA’s 
inception, dozens of studies have utilised it to estimate efficiency and 
sustainability in different parts of the transportation sector (Cavaignac 
and Petiot, 2017). DEA has been applied for the sustainability assess-
ment of various transport case studies within a country (Chuti-
phongdech and Vongsaroj, 2022; Gandhi et al., 2022; Stefaniec et al., 
2020) and between several countries (Güner, 2021; Stefaniec et al., 
2021). In relation to the public transport domain, Caulfield et al. (2013) 
employed DEA as an appraisal tool to examine optimal public transport 
investment strategies. Suguiy et al. (2020) considered the quality of 
service, satisfaction of the passengers, and operation efficiency index to 
measure the performance of the public transport network in 50 Brazilian 
cities by using DEA. Including daily shared-bicycle ridership and the 
number of shared-bicycle stations as indicators in their proposed DEA 
framework, Tamakloe et al. (2021) analysed transit-oriented develop-
ment in Seoul. 

Tavassoli et al. (2014) proposed a model based on the SBM to analyse 
the technical efficiency and service effectiveness of 11 Iranian airlines. 
Gong et al. (2019) utilised an SBM-based model to compare 26 major 
shipping companies. Tomikawa and Goto (2022) measured the effi-
ciency of the Japanese railway system before and after privatisation by 
combining both radial and nonradial DEA. Using SBM, Quintano et al. 
(2020) assessed the eco-efficiency of 24 ports in Europe. In line with 
other studies (Rashidi and Cullinane, 2019; Liu et al., 2017; Lee et al., 
2014; Cook et al., 2013), they confirmed that outcomes generated from 
SBM are more precise and reliable compared to radial DEA models when 
dealing with complex case studies. To effectively deal with complex 

dynamic applications (when the system runs over separated time pe-
riods), Tone and Tsutsui (2010) introduced the dynamic SBM model, 
which investigates and evaluates DMUs in separated periods. 

A few research papers also concentrate on the performance mea-
surement of shared mobility in urban settlements from different points 
of view. Focusing on the efficiency evaluation of Malmö’s public bike- 
sharing stations and their determinants, Caggiani et al. (2021) 
employed DEA to identify the best-performing stations in the system. In 
their model, they considered the usage trends of each station as outputs 
and the characteristics of stations are among their inputs. They 
concluded that their outcomes could assist service planners in reallo-
cating existing resources in the bike-sharing system. The turnover rate of 
bike-sharing stations is defined as both the daily number of bikes rented 
from a station divided by the same station’s capacity and the daily 
number of bikes returned to a station over the same station’s capacity 
(Jiménez et al., 2016). Aiming to improve the efficiency of the bike- 
sharing system in Seoul, Hong et al. (2020) utilised turnover rate and 
balancing rate as outputs in their two-stage DEA-based framework. Also, 
the number of bicycle racks and the ratio between the bicycle paths and 
vehicle lanes are selected as inputs. They mentioned their short study 
period (one month) as the main limitation of their work. In an effort to 
reduce the occurrence of accidents involving micro-mobility, Prencipe 
et al. (2022) employed input-oriented radial DEA to assess the safety of 
urban areas. Their study was conducted in the city of Bari, Italy and 
involved the consideration of various inputs including population size, 
number of educational institutions, hospitals, and bus stops. 

Apart from DEA, a number of studies explored electric micro- 
mobility from diverse angles, using different analytical tools. For 
instance, Bardi et al. (2019) constructed an ordered probit model to 
identify the determinants of satisfaction levels and usage patterns in e- 
bike sharing systems. De Kruijf et al. (2021) employed binary regression 
analysis to investigate the relationship between e-cycling and weather 
conditions in Noord-Brabant, the Netherlands. They concluded that e- 
bike trips decrease at higher air temperatures. Noland (2021) analyzed 
the effect of weather conditions on three shared micro-mobility modes, 
namely e-scooters, e-bikes, and bicycles, in Austin, Texas, using Prais- 
Winsten regression analysis. The author noted that higher average 
temperatures increase the duration and distance of e-bike travel, while 
lower temperatures, rain, and wind have an adverse effect on e-cycling. 

1.3. Structure of the paper 

The central aim of the current study is to provide quantitative 
empirical evidence to handle policy-related concerns on the adoption of 
shared mobility. This work develops an evaluation framework to mea-
sure the relative efficiency of the eHUBs and identify the factors which 
determine their performance to assist local authorities in the future 
planning and management of these sites. 

The rest of the research paper is organised as follows. Section 2 
presents the methodology. Section 3 describes the case study, dataset, 
our new proposed framework, and variables. Section 4 interprets the 
study’s outcomes and discusses key factors influencing the operational 
performance of eHUBs. Section 5 concludes the paper and provides 
recommendations for policymakers. 

2. Methodology 

To measure the performance of eHUBs, the current study employs 
the SBM-DEA approach for the following reasons. DEA and stochastic 
frontier analysis (SFA) are two well-established quantitative approaches 
for performance assessment. However, SFA, as a parametric method, is 
suitable for single-output case studies. Thus, SFA is unfit to appraise 
complex systems such as the eHUB network when several outputs exist. 
Conversely, as a nonparametric methodology, DEA can measure relative 
performance in multi-input and/or multi-output cases (Wu et al., 2016). 
Charnes et al. (1978) introduced radial DEA to measure the productivity 

1 eHUBS project website: https://www.nweurope.eu/projects/project- 
search/ehubs-smart-shared-green-mobility-hubs/. 
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of the decision making units (DMUs). DEA is able to produce a single 
measure of performance for each DMU with multiple inputs consumed 
to produce multiple outputs. It should be noted that DEA is a relative 
efficiency appraisal model. This means that DEA can assist decision- 
makers in learning how well a DMU performs compared to its peers. 

2.1. Dynamic slacks-based measure approach 

Tone (2001) developed the nonradial efficiency measure in DEA 
called SBM. Unlike the radial model, the SBM model deals concurrently 
with the input surpluses and the output shortfalls. The inefficiency 
components called slack variables are deducted from the unity, giving 
each DMU a performance score (Tomikawa and Goto, 2022). In addi-
tion, SBM possesses greater discriminatory power than radial models to 
rank DMUs (Rashidi and Cullinane, 2019). There are n DMUs that utilise 
input X = (xij) ∈ Rm×n and output Y = (yij) ∈ Rs×n. The SBM method-
ology is unit-invariant and also monotone decreasing in each slack of 
input s−i (i = 1, ⋯, m) and output s+r (r = 1, ⋯, s) that represent input 
surplus and output shortfall, respectively. 

Based on the technology set, the relative efficiency of the focal DMUo 
may be generated from the linear program. We select output-oriented 
SBM to calculate the operational performance scores of eHUBs, since 
it is assumed that the regulators wish to enhance the electric mobility 
system output and maximize profit. The efficiency score of DMUo under 
the constant returns to scale assumption is obtained by: 

1
ρo

= max
λ, s− ,s+

1+
1
s

(
∑s

r=1

s+r
yro

)

s.t. xio =
∑n

j=1
xijλj + s−i (i = 1,⋯,m), yro

=
∑n

j=1
yrjλj − s+r (r = 1,⋯, s), λj ≥ 0 (∀j), s−i ≥ 0 (∀i), s+r ≥ 0 (∀r)

(1) 

A DMU is classified as SBM-output-efficient if the value of ρo is equal 
to unity. That is equivalent to having output slacks of size zero. The 
model enables us to obtain projections onto the frontier for inefficient 
DMUs. Based on the optimal solutions for λ*, s− *, and s+*, the input 
surplus and output deficiency are computed. 

To demonstrate the changes in performance over time, we apply the 
modified dynamic SBM to measure the performance of each station 
during each month of the 12-month sample. The selected input and 
output are computed in T periods indexed t = 1,⋯,T. DMUs, indicators, 
and parameters are identified by subscript or superscript t, which relates 
them to the term. The model does not consider any additional carry-over 
activities due to the absence of link indicators in the eHUB system 
dataset. The dynamic system possibility set is defined as follows: 

xit ≥
∑n

j=1
xijtλt

j(i = 1,⋯,m; t = 1,⋯, T), yrt ≤
∑n

j=1
yrjtλt

j (r = 1,⋯, s; t

= 1,⋯, T), λt
j ≥ 0 (j = 1,⋯, n; t = 1,⋯, T). (2) 

The output-oriented efficiency τot for period t can be computed from 
the program below (Tone and Tsutsui, 2010): 

1
τot

= max
λ, s− ,s+ ,su+

1+
1
T

[
1
s

(
∑s

r=1

s+rt

yrot

)]

, s.t. xiot =
∑n

j=1
xijtλt

j + s−it (i = 1,⋯,m; t

= 1,⋯, T), yrot =
∑n

j=1
yrjtλt

j − s+rt (r = 1,⋯, s; t = 1,⋯, T), λt
j

≥ 0 (∀j, t), s−it ≥ 0 (∀i, t), s+rt ≥ 0 (∀r, t).
(3) 

Because of the reciprocal of τot, the output efficiency score ranges 
between zero and unity. To calculate the SBM estimates, we employ 
R software. 

2.2. Network representation 

Network analysis is a tool that detects patterns in complex systems 
such as bike-sharing systems (Wu and Kim, 2020; Xin et al., 2022; 
Builes-Jaramillo and Lotero, 2022) and thus suits our case study. A 
representation of the network of eHUB stations was constructed as a 
graph and visualised using open-source software Gephi version 0.9.7 
(Gephi, 2022). The network consists of nodes that represent the eHUB 
stations, and edges that link these stations. The network is directed, 
meaning that the flow of e-bikes into and out of each station was taken 
into account. Round trips were also included in the analysis, ensuring a 
comprehensive view of network operation. The weight of the edge 
represents the bidirectional flow between a pair of stations, while the 
node’s weight reflects the number of round trips. The distance between 
stations was not considered in this analysis. To measure the connectivity 
of the stations, a degree centrality metric was applied (Wu and Kim, 
2020). It is the sum of the in, out, and round trips from and to a given 
station. 

The application of network analysis provides a comprehensive un-
derstanding of the dynamics and usage patterns inherent to the eHUB 
network. It offers a clear depiction of the system’s key strengths and 
weaknesses, guiding future enhancement and effective planning for the 
service providers. For instance, identifying the most active stations or 
routes can provide insights for potential infrastructure upgrades or more 
efficient redistribution of e-bikes across the network. 

3. Case study 

3.1. Study area 

This case study develops a framework to evaluate the operational 
performance of eHUB networks. The proposed framework is based on 
dynamic DEA, which can compare units that utilise and produce the 
same sets of inputs and outputs. The method is applied to evaluate the 
performance of the eHUB system in Inverness (known as Hi-Bike In-
verness, developed by HITRANS company) covering the 12 months of 
operation from its inception in October 2021 to September 2022. During 
the study period, the network offered only one type of electric vehicle: e- 
bikes. 

Inverness, the capital of the Scottish Highlands, is home to almost 
50,000 inhabitants (The Scottish Government, 2022). By the end of 
September 2022, there were three docking eHUBs in Inverness: Inver-
ness Campus, Inverness Railway station, and NatureScot Great Glen 
House station (See Fig. 1). A docking eHUB has physical docks available, 
and e-bikes can recharge their batteries there (Fig. 2). The Inverness 
Campus station is situated nearby several higher education institutes. 
Inverness Railway is located close to the central transit node of the city, 
and NatureScot Great Glen House is in proximity to a large business 
centre. Also, Inverness had three virtual (dockless) eHUBs available: 
Eden Court Theatre station, Inverness Leisure station, and Raigmore 
Hospital station (Fig. 1). A virtual eHUB is a GPS-defined zone where e- 
bikes can be taken out or returned to the system, but there are no 
charging facilities. The system has another virtual station (School of 
Forestry station), but we do not consider it in our DEA analysis because 
of data inconsistency. The Eden Court Theatre station operates beside a 
cultural centre. Inverness Leisure station is on the doorstep of a com-
munity sports centre, and Raigmore Hospital station is located within a 
hospital area. This diversification in the locations of current stations can 
offer helpful information about the impact of the surrounding vicinity on 
the performance of each station and provide insights for choosing sites 
for new stations. 

3.2. Data description 

For operational efficiency measurement of eHUBs based on previous 
literature and the available data, the capacity of each station at the 
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eHUB system is considered as the sole input (Fig. 3). The eHUB network 
in Inverness utilises a fleet of 30 e-bikes circulating across all stations. 
Each virtual station accommodates up to six e-bikes, while each docking 
station has a capacity for 15. Outputs include the turnover station rate 
based on arrival, balancing station rate, and monthly total length of trips 
per station (in km). The turnover station rate (TO) expresses the station’s 
popularity as a destination point. In other words, it shows how often the 
capacity of an eHUB is used by riders. Jiménez et al. (2016) calculated it 
as the total number of daily arrivals (ARi) to the station i divided by the 
station’s capacity (Ci). 

TOi =
ARi

Ci
(4) 

The balancing station rate (BL) demonstrates the daily average oc-
cupancy of each eHUB. It shows whether there is a balance between the 
number of e-bikes taken out from a station and put into a station within a 
day. It is defined as the ratio between daily departure (DPi) and daily 
arrival (Hong et al., 2020) of e-bikes at each station in the eHUB 
network. 

BLi = 1 − |
DPi − ARi

ARi
| (5) 

Finally, to compute the monthly total length of trips per station (LTi) 
in km, we multiply the number of monthly departures from station i by 
the monthly average distance of the trips started from station i. A 
summary of the descriptive statistics of the relevant data is shown in 
Table 1. The current research used data from six operating eHUBs in 
Inverness, covering the 12 months from October 2021 to September 
2022. To evaluate the performance based on the proposed framework, 
we treat each eHUB in a particular month as an eHUB-month unit; 
hence, we have 72 DMUs. High construct validity is concluded for our 
DEA model because the number of eHUB-month units meets the rule of 
thumb (Hosseini and Stefiniec, 2019) that the number of DMUs should 
be bigger than triple the number of variables used for the DEA analysis. 

As shown in Table 1, the minimum amount of monthly total length of 
trips per station travelled in the system is zero, which is the case for 
Inverness Leisure station in December 2021. Tone (2002) mentioned 
two possible reasons for a DMU, having an output of size zero. First, the 
DMU may never produce that specific output during the studied period, 
in which case the indicator must remain untouched (zero). Second, the 
DMU can generate that output, but incidentally, its observed value is 

Fig. 1. Map of the eHUB network in Inverness.  

Fig. 2. Inverness Campus eHUB with physical docks and shared e-bikes. (Photo 
credit: Highlands and Islands Enterprise). Reprinted with consent. 
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zero. In this case, we must change the amount of the variable from zero 
to a small positive number (for instance, 0.1). December 2021 is the only 
month in which the average trip distance from Inverness Leisure station 
was zero. Thus, we adjusted the average distance for Inverness Leisure 
station in December from zero to 0.1 (see Hosseini and Stefaniec, 2019 
for an opposite case). 

Moreover, correlation analysis for the selected indicators was also 
calculated and is presented in Table 2. The correlation coefficients are 
significantly positive at the 1% level, showing that the indicators are 
significantly related and suitable for use in the proposed dynamic SBM 
model. 

4. Results and discussion 

4.1. Empirical results 

The core target of this study is to propose a comparative framework 
to measure the operational performance of electric shared mobility hubs 
and to offer quantitative evidence-based responses to policy-related 
questions on adoption of shared mobility. To compare the eHUBs on 
the real dataset, one specific input and three specific outputs were used 
in the dynamic SBM model (Equation (3). In this study, we focus on the 
eHUB network in Inverness, and during the study period, that network 
offered just one type of electric vehicle: e-bikes. Using the most recent 
data from the eHUBs, this research develops a dynamic two-stage DEA 
framework to profoundly explore this mobility service over 12 months. 
The performance scores generated from our model represent how suc-
cessfully each eHUB in the network utilises available facilities. 

Furthermore, these scores are relative, indicating the performance of 
each station in comparison to its peers. Therefore, low average perfor-
mance scores do not represent the low performance of the whole system 
but rather the low performance of some stations compared to others 
within the network. 

Table 3 reports the assessment outcomes generated from the pro-
posed dynamic framework. The operational performance scores, ranging 
between 0 and 1, are used to rank the 72 eHUB-month units. In the 
dynamic SBM model, DMUs obtaining a score of 1 are efficient. In 
general, higher efficiency values represent better performance among 
the DMUs. In this way, our proposed model can distinguish among 
DMUs to identify the better performers. In other words, the higher their 
score, the more relatively efficient they are. Conversely, a lower score 
means poorer relative performance. Using arithmetic means, we also 
computed the average efficiency score by stations and average monthly 
efficiency scores to obtain the ranking (Table 3). 

The following conclusions can be extracted from Table 3. Out of the 
72 station-month DMUs, three were relatively efficient: Inverness 
Campus in October 2021 and September 2022, and Raigmore Hospital in 
November 2021. This shows our proposed model’s high discriminatory 
power, which can detect inefficiencies in complex transportation sys-
tems such as an eHUB network. Although Inverness Railway was not 
fully efficient during any month of the study period, it has the highest 
average efficiency performance among the eHUBs. The Inverness 
Campus station obtained the second-highest average efficiency score. 
The first two more relatively efficient stations are docking stations. 
Raigmore Hospital station ranked as the third-best performer among all 
stations and the most efficient virtual station. Two virtual stations, Eden 
Court Theatre and Inverness Leisure, obtained lower efficiency scores 
than their peers and ranked fourth and fifth, respectively. Finally, 
NatureScot Great Glen House appeared to be the most inefficient station. 

Moreover, looking at time periods, Inverness’ eHUB network per-
formed better in September 2022, November 2021, and August 2022 
than in other studied months. The first six months of running the project 
happened during the COVID-19 pandemic, and the other half occurred 
after the pandemic restrictions were lifted in Scotland. The average 
performance score of eHUBs in the pandemic period was slightly lower 
(0.339) than in the post-pandemic period (0.439), however, no statis-
tically significant difference in performance was observed between the 
means of the two periods based on the results of the T-test (Banker et al., 
2010). The eHUB network started operating in September 2021, which 
might be a reason for slightly lower scores during the first few months. 
For an established shared mobility network, periods of pandemic could 
elicit an increased demand for such services. Wang and Noland (2021) 
suggest that when public apprehension and the imposition of social 
distancing detrimentally affect public transportation usage (Sogbe, 
2021), alternatives such as shared bikes and other shared micro-mobility 
solutions can serve as suitable substitutes for private cars. They 
demonstrate that these alternatives could potentially avoid the switch 

Fig. 3. Illustration of the proposed dynamic framework.  

Table 1 
Descriptive statistics of inputs and outputs for the proposed performance mea-
surement model.   

Min Max Mean Std. Dev. 

Station capacity  6.000  15.000  10.500  4.532 
Turnover rate  0.005  0.753  0.174  0.163 
Balancing rate  0.333  1.000  0.870  0.141 
Monthly total length of trips (km)  0.000  2049.520  359.309  468.487  

Table 2 
Spearman correlation coefficients matrix of indicators.   

Station 
capacity 

Turnover 
rate 

Balancing 
rate 

Monthly total 
length of trips 

Station capacity 1    
Turnover rate a 0.350 1   
Balancing rate a 0.395 a 0.365 1  
Monthly total 

length of trips 
(km) 

a 0.739 a 0.798 a 0.395 1  

a Correlation is significant at 1%. 
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from public transportation to private automobility when possible similar 
pandemics hit in future. 

4.2. Exploring the influencing factors 

As an intricate system, the low or high efficiency of the trans-
portation chain can stem from multiple reasons. To investigate how 
factors outside the boundary of the eHUB system influence the perfor-
mance scores, we perform a squared correlation analysis between ob-
tained scores and the number of factors. Previous research pointed out 
weather conditions (De Kruijf et al., 2021; Noland, 2021), population in 
the catchment area (Mateo-Babiano et al., 2016; Zhang et al., 2019), and 
proximity to the public transport network (McBain and Caulfield, 2018; 
Oeschger et al., 2020; Caggiani et al., 2021) as factors which may have 
influence the demand for micro-mobility sharing systems. 

To evaluate the impact of weather conditions on the performance of 
these 72 eHUB-month DMUs in Inverness, we calculate the correlation 
coefficient between average performance scores (Monthly) and several 
meteorological indicators. These weather indicators presented in 
Table 4 were compiled from the data collected by the nearest meteo-
rological station in Nairn (The Meteorological Office, 2023). These in-
dicators include monthly average temperature (◦C), maximum 
temperature (◦C), minimum temperature (◦C), number of frost days, 
amount of rainfall (mm), and number of sunshine hours. 

Weather conditions appear to importantly influence the riding de-
mand at the studied eHUBs. The correlation coefficients related to 

temperature are strong, positive, and significant, representing that 
higher temperatures increase riding demand at eHUBs (Table 5). This 
finding is consistent with the results reported by Noland (2021), who 
found that higher temperatures increase the demand for micro-mobility. 
However, since the maximum recorded temperature in Inverness during 
the study period was 20.1 ◦C (Table 4), we were unable to explore the 
influence of excessively high temperatures on e-bike usage. Therefore, 
our observation does not contradict the findings of De Kruijf et al. 
(2021), who demonstrated that high temperatures decrease e-cycling. 
The maximum temperature recorded during their study period was 
33.4 ◦C. 

Furthermore, we find neither a strong nor significant correlation 
related to number of frost days, the amount of rainfall, and the number 
of sunshine hours per month. This may be attributed to the oceanic 
climate of Inverness, characterized by a considerable level of precipi-
tation that persists throughout the year. It is worth mentioning that 
there were no occurrences of frost days in October 2022, nor in the 
period spanning from May 2022 to September 2022. Notably, the month 
of December 2022, which exhibited the weakest performance score 
(Table 3), recorded the highest number of frost days at 11 (Table 4). This 
observation potentially suggests that the frequency of frost days may 
have contributed to the diminished operational performance score 
during December 2022. 

We examine the effects of indicators such as population in the 
catchment area of stations (within a radius of 400 m, a walkable dis-
tance), availability of public transportation (number of bus stops within 

Table 3 
Performance score of eHUBs from October 2021 to September 2022.  

Time period eHUBs  

Eden Court 
Theatre 

Inverness 
Campus 

Inverness 
Leisure 

Inverness 
Railway 

NatureScot Great Glen 
House 

Raigmore 
Hospital 

Average 
(month) 

Rank 
(month) 

October 2021 0.243 1.000 0.200 0.554 0.082 0.338  0.403 6 
November 

2021 
0.397 0.627 0.327 0.716 0.126 1.000  0.532 2 

December 2021 0.125 0.277 0.004 0.307 0.014 0.590  0.219 12 
January 2022 0.096 0.214 0.048 0.389 0.050 0.614  0.235 11 
February 2022 0.033 0.160 0.126 0.353 0.016 0.784  0.245 10 
March 2022 0.420 0.576 0.225 0.609 0.072 0.489  0.398 7 
April 2022 0.137 0.522 0.320 0.605 0.225 0.754  0.427 5 
May 2022 0.151 0.386 0.102 0.624 0.120 0.584  0.328 9 
June 2022 0.236 0.607 0.081 0.678 0.117 0.464  0.364 8 
July 2022 0.639 0.564 0.308 0.770 0.206 0.238  0.454 4 
August 2022 0.307 0.824 0.633 0.888 0.105 0.123  0.480 3 
September 

2022 
0.647 1.000 0.648 0.889 0.154 0.133  0.579 1 

Average 
(station) 

0.286 0.563 0.252 0.615 0.107 0.509  – – 

Rank (station) 4 2 5 1 6 3  – –  

Table 4 
Weather indicators on a monthly basis from October 2021 to September 2022 (The Meteorological Office, 2023).   

Average Temperature 
(◦C) 

Maximum Temperature 
(◦C) 

Minimum Temperature 
(◦C) 

Number of frost days per 
month 

Rainfall 
(mm) 

Number of Sunshine 
hours 

October 2021  10.40  13.8 7 0  70.4 61.3 
November 

2021  
7.30  10.4 4.2 2  56.7 35.7 

December 
2021  

4.05  6.9 1.2 11  45.9 41.9 

January 2022  6.10  8.7 3.5 2  25.3 56.1 
Febuary 2022  4.65  7.7 1.6 4  95.2 76.1 
March 2022  6.40  11.7 1.1 10  16.1 204.9 
April 2022  7.65  11.6 3.7 3  75.4 137 
May 2022  11.55  15.3 7.8 0  48.6 156.5 
June 2022  13.95  18.6 9.3 0  29.4 209.6 
July 2022  15.85  20.1 11.6 0  43.4 143 
August 2022  15.40  19.5 11.3 0  31.8 172.1 
September 

2022  
13.35  16.7 10 0  57.5 110.4  
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a radius of 1 km), number of round and one-way trips started from each 
station, and weather conditions. It is worth mentioning that the popu-
lation in the catchment area was estimated based on HITRANS’ open- 
access geographic information. Also, the number of bus stops in prox-
imity to each station was obtained from Google Maps. 

The Spearman’s correlation coefficient between efficiency scores and 
population in the catchment area of stations equals 0.670, indicating a 
strong significant positive association between them (Table 6). There-
fore, the low performance of NatureScot Great Glen House and Inverness 
Leisure stations could be due to the low population in their surrounding 
area compared to other stations. Conversely, the relatively high scores 
obtained by Inverness Railway and Inverness Campus correspond to a 
higher population in their catchment area. Also, the docks at the 
NatureScot Great Glen House station are tucked away from the main 
road and located beside the building entrance. This may cause low 
visibility and, as a result, low performance for this eHUB. Also, the In-
verness Railway station stands beside the city’s major transit point, 
which can be another reason for the high efficiency of this station. In the 
case of the Inverness Campus station, its proximity to two universities 
constitutes another reason for the high efficiency scores of this station, 
particularly in September and October. Given the above, we conclude 
that the population in the walkable area around eHUBs is a crucial factor 
to be considered when situating them. 

Regarding proximity to public transport, this study found a weak but 
significant correlation coefficient (0.392) between obtained efficiency 
scores and the number of bus stops within a 1 km radius. However, no 
significant correlation was found when considering bus stops within a 
400 m radius (Table 6). Therefore, this research is unable to confirm the 
findings of previous studies that examine bike-sharing systems and 
propose that these systems complement public transport (Shaheen and 
Chan, 2016; McBain and Caulfield, 2018; Caggiani et al., 2021). This 
inconsistency may necessitate treating e-bike sharing systems differently 
from bike sharing systems in terms of their relationship with public bus 
transport. Specifically, the stronger association with public transport for 
bikes compared to e-bikes suggests a more complementary relation with 
the former rather than the latter. This observation implies that e-bikes, 
with their motor assistance, have the potential to overcome barriers 
associated with traditional bike riding such as gradients and physical 
effort. This enables them to cover distances that may have previously 
required a combination of bikes and local public transport, though 
further research is needed to confirm this assertion. Nevertheless, the 
high efficiency of Inverness Railway could demonstrate a positive rela-
tionship between shared e-micro-mobility and railway services, as well 
as potentially other long-distance public transport modes. Situating 
stations near transit hubs can also provide a traveller with a means to 
cover the first and last mile of a journey and, in doing so, contribute to a 
modal shift toward sustainable transport. 

4.3. Network representation of the eHUB system 

Correlation analysis is also performed between the efficiency scores 
and the number of monthly round and one-way trips (Table 6). It in-
dicates a very strong association with respect to one-way trips and a 
strong relationship to round trips. Of the total number of trips, one-way 
trips constituted 62.15%, while the remaining 37.85% consisted of 
round trips. This observation is significant because some service pro-
viders in other pilot cities are currently focused exclusively on e-bike 
round trips. Therefore, it is recommended that they consider including 
the possibility of one-way trips in their future plans to accommodate this 
popular travel preference. Additionally, excelling in providing both one- 
way and round-trip options would enhance the overall usability and 
appeal of the eHUB network. To more adequately investigate these ob-
servations, we perform a network analysis of the eHUB system. 

A network representation of the eHUB stations provides useful in-
formation about the links between stations and the riding volume. The 
graphs in Fig. 4 show the cumulative network flow in the period from 
October 2021 to September 2022. The number of rides between stations 
and round trips was expressed as a percentage of all trips in the network 
in a given period to enable comparison over time. The number of in and 
out trips were calculated, and the sum of the edges for these is reported. 

The graphs show that the Inverness Railway-Inverness Campus 
segment dominated the network and accounted for 66.30% of all trips 
(including round trips) in the study period. Between the two stations, the 
campus was more popular for round trips, which made up one-fifth of all 
trips taken within the network. However, the connectivity analysis 
found that Inverness Railway attracted the highest number of eHUB 
system users: 41.74% (Table 7). 

A substantial number of journeys also used the route linking Inver-
ness Railway with Raigmore Hospital. The three points – Inverness 
Railway, Inverness Campus, and Raigmore Hospital – are centrally 
located in Inverness. The least popular were connections between sta-
tions located far apart, such as NatureScot Great Glen House-Raigmore 
Hospital or Inverness Railway-School of Forestry. The lowest connec-
tivity was observed for Inverness Leisure, followed by NatureScot Great 
Glen House and Eden Court Theatre (Table 7). School of Forestry was 
not used continuously throughout the study period, hence cannot be 
fully analysed. 

5. Conclusions and policy implications 

Using a novel dynamic DEA-based model, this research examines the 
performance of a shared mobility system known as shared electric 
mobility hubs (eHUBs) in Inverness, Scotland. We recognise the more 
relatively efficient stations in eHUB network and the determinants of 
their higher operational efficiency. Identifying the features of better- 
performance stations will assist service providers and policy makers in 

Table 5 
Spearman’s correlation coefficients between Average Performance scores and the weather indicators.   

Average 
Temperature 

Maximum 
Temperature 

Minimum 
Temperature 

Number of frost days per 
month 

Rainfall 
(mm) 

Number of Sunshine 
hours 

Average Performance scores 
(Monthly) 

0.629a 0.580a 0.615a  − 0.486  0.189  0.119  

a Correlation is significant at 5%. 

Table 6 
Spearman’s correlation coefficients between performance scores and the selected indicators.   

Population within a radius of 
400 m 

Bus stops within a radius 
of 1 km 

Bus stops within a radius of 
400 m 

Number of Round 
trips 

Number of One-way 
trips 

Total number of 
trips 

Performance 
scores 

0.670b 0.392b  0.224 0.567b 0.843b 0.806b  

b Correlation is significant at 1%. 
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designing and expanding the studied network and other similar mobility 
systems more effectively. The findings indicate that eHUB stations 
located in close proximity to transit hubs and higher education in-
stitutions are more operationally efficient. The Inverness Railway and 
Inverness Campus locations were proven to be great trip attractors, with 
popularity rising on warmer days. The empirical evaluation of the 
eHUBs in Inverness leads to the following conclusions and mobility 
policies which can be generalised to e-bike-sharing systems in other 
regions. 

First, the analysis shows that the population within the walkable area 
around the eHUB stations is a critical factor in achieving optimal de-
mand for the service. Stations with a larger population in their catch-
ment area appeared to have better performance. For instance, the 
Inverness Railway, with the highest population in its catchment area, 
was the most efficient during the study period. Conversely, the 
NatureScot Great Glen House station, located in a catchment area with 
the lowest population, displayed the weakest efficiency. In this study, 
the catchment area was regarded as comprising only residents, but it is 
important to acknowledge that travellers or tourists could also increase 
the demand for e-bike services. An underlying factor that may explain 
the effects of both could be the volume of pedestrian traffic; this data, 
however, has not been available and, if collected, could be used in future 
research. 

Second, while previous research (Shaheen and Chan, 2016; McBain 
and Caulfield, 2018; Caggiani et al., 2021) indicates a complementary 
relationship between bike-sharing systems and public transport, this 
study reveals a weak association between the performance of e-bike 
stations and public bus services. This highlights the potential of e-bikes 
as a standalone mode of transportation for longer journeys. Equipped 
with motor support, e-bikes effectively address obstacles such as dis-
tance, gradient, and physical exertion, thereby eliminating the necessity 

of combining them with local public transport for complementing 
extended travel. Moreover, e-bikes are well-suited for complimenting 
long-distance travel, as evidenced by the popularity of the Inverness 
Railway among eHUB users. Inverness Railway was most popular among 
e-HUBs users indicating that long-distance travel rather than short- 
distance is complimented by e-bikes. This has an implication for plan-
ning multi-modal transport by locating e-bike sharing stations at the 
transit hubs rather than local public transport stops. 

Third, the study reveals that virtual eHUB stations have lower per-
formance scores than docking eHUBs. Additionally, the NatureScot 
Great Glen House station, despite being a docking station, receives the 
lowest efficiency score. This could be due to its location being tucked 
away from the main road and adjacent to the building entrance, making 
it difficult to find. Hence, the lack of recognisability for both the 
NatureScot Great Glen House station and dockless stations could be a 
factor contributing to their lower operational performance. Although 
frequent users might more readily locate virtual stations with time, this 
may pose a difficulty for new and sporadic riders. It is suggested that the 
relationship between station recognisability and attracting e-bike users 
requires further investigation, as existing literature does not provide 
sufficient evidence, and this study was not specifically designed to 
establish a causal relationship. Nevertheless, increasing the station’s 
visibility in open-access geographic maps such as Google Maps or 
placing the stations near main roads can enlarge the recognisability of 
stations and may improve the system’s performance. 

Fourth, the impact of temperature was found to be considerable. The 
results revealed that higher temperature increases the riding demand at 
eHUBs. Interestingly, the amount of rainfall and number of sunshine 
hours seem not to influence the riding patterns. The oceanic climate of 
Inverness, with a substantial precipitation level that persists throughout 
the year, may be a reason for this. While no significant correlation was 
found between the number of frost days and the monthly performance 
score, it is notable that December 2022, with the weakest performance 
score, experienced the highest number of frost days. This observation 
indicates that frost days may have played a role in the low operational 
performance during December 2022. On the other hand, the impact of 
the COVID-19 pandemic on performance scores was not found to be 
significant. This might show that eHUBs could serve as substitutes for 
private cars when the restrictions reduce public transport usage during 
incoming pandemics. 

Fifth, this study does not account for the quality of cycling infra-
structure in Inverness, although it is a crucial factor in attracting e-bike 
users. The bicycle lanes in the city are scattered and disconnected. Also, 
Inverness does not have sufficient segregated cycle infrastructure, which 

Fig. 4. Ehub stations network represented by nodes and edges.  

Table 7 
Connectivity of eHUB stations, whole period.  

Station All trips (%) 

Eden Court Theatre 4.81 
Inverness Campus 36.31 
Inverness Leisure 3.12 
Inverness Railway 41.74 
NatureScot Great Glen House 4.66 
Raigmore Hospital 7.65 
School of Forestry 1.71 
Total 100  
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affects the overall perception of the city’s attractiveness for cyclists and 
e-bike users. As shown in the case of Seville, demand for shared bikes 
may rise if the local government invests in improving the provision of 
infrastructure following the guideline rules proven effective in the 
Spanish city (Marqués et al., 2015). Good-practice network design fea-
tures include the segregation of bike lanes from motorised traffic, 
bidirectionality of cycling traffic, continuity of paths without gaps, 
uniform design and pavement, and connecting trip attractors with res-
idential areas (Caulfield et al., 2020). 

Finally, we hope that this quantitative analysis serves as a ground-
work for future research and practical applications, facilitating a more 
rigorous examination of the interconnected implications and mecha-
nisms of shared mobility and electric micro-mobility in transportation 
system development and policy formulation. This case study was con-
ducted based on data from a small-medium-sized urban area. Therefore, 
future research could analyse the electric shared mobility systems in 
larger cities and metropolitan areas. Such future research should com-
plement our findings by showing diverse perspectives and may bring 
further practical insights into implementing electric shared mobility 
systems. 
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