Context/Intro:

In the framework of the ICaRE4Farms project, this document aims at reviewing the theoretical inner potential of Feng Tech STE system within the agricultural sector of Dairy Farming.
The current academic example focuses on a holding without on-farm processing and located in Roscommon. The assumptions are that it owns a herd of 90 cows for which it needs around 34970 kWh of energy supply per year in order to clean its milking parlours and milk tanks. After enumerating the main characteristics of this typical and fictional dairy farm, a simulation with the Fengtech STE system illustrating expected results will be tackled.
This file will be completed and crossed with a real-life case with similar attributes.
!!!!invent for academic/anonymise for field application case!!!!!

- No/Nickname: N ${ }^{\circ} 1$ / Irish Dairy Farm

Type of holding: Dairy Farm (without on-
farm processing)

PART I: ACADEMIC CASE

- Location (Country/Region): Roscommon, Ireland (Lat/Lon: 53372;-8033)
- Date: 13/10/21

1 Initial characteristics of the installation: (Use Market Analysis + Technology Assessment)

- Size of the surface/number of animals: 90 cows
- Water Use (heating/direct use): Cleaning of the Milking Parlours \& Storage
- Frequency: twice
- Timeframe: once in the morning and once in the evening
- Quantity: 900L per day for the whole herd (assuming 10L of water per cow)
- Version of FT STE system (ETF 1 / ETF2): ETF 2 (with pressure)
- Temperature needed (in ${ }^{\circ}$): 80°
- Standard fossil energy used: Electric Boiler
- Price of fossil energy per $€ / k W h: 0.21 € / k W h$ (shift between day and night)
- Energy consumption for the activity (in kWh/year): 34970 kWh/year
$c f$. with energy waste and differentiated needs depending on the period of the year, the energy need accounts for 34994 kWh/year (see calculation tool)
- Expenditure of energy consumption (in EXCL TAX€/year): 7 344€
cf. 0.21 EXCL.TAX/€/kWh $\times 34970 \mathrm{kWh} /$ year $=7343.7$ EXCL. TAX €/year
- Available subsidies for STE: no subsidy / possibly grant from SEAI (to be asserted)
- Amount of CO2 emission: 15946 kg CO2/year
cf. given that 1 kWh produces about 0.456 kg CO2(eq), 0.456 kg CO2/kWh $\times 34970 \mathrm{kWh} / \mathrm{year}=15946.32 \mathrm{~kg}$ CO2/year

Prerequisites of installation:

- Located on floor or roof
- Preference = South-West facing
- Not far from the holding to avoid additional energy needs for re-heating

Employed Version of the matrix = V10 Lille Study Case

(2) Simulation with a Feng Tech STE system:

- Coverage Rate of the installation (Share of utilisation in \%): 50\% (dimensioning for at least 50\%)
- Number of STE units to reach the energy needs: 4 units
cf. potential useful STE $=11054 \mathrm{kWh} /$ year
- Overall front surface of capture: 16 m 2
cf. 1 FT $=4 \mathrm{~m} 2$; 4m2/unit x 4 units $=16 \mathrm{~m} 2$
- Maximum attainable temperature with the current solution (in ${ }^{\circ}$): $100^{\circ} \mathrm{T}$ (optimal conditions)
- Power (kW/unit): $2.5 \mathrm{~kW} / \mathrm{unit}$
- Number of sensors needed for remote surveillance and monitoring:

Commercial scope $=2$ thermometers +2 flowmeters

- Surface requirement for the equipment:

- Irradiance \& Cold Water Measurements:

Solar irradiance value (Calsol INES)	Roscommon	Albedo	0,8										
Unit (kWh / m ${ }^{2}$ / day)	Jan.	Feb	Mar.	Apl.	May	Juin	Luly	Aug	Sep	Oct.	Nov.	Dec.	Year
Direct irradiance	0.45	1,03	1,63	2,60	3,18	1,18	1,34	1,34	1,15	0,97	0,49	0,34	1,31
Diffus irradiance	0,88	1,43	2,00	2,40	2,60	2,51	2,72	2,49	2,14	1,58	0,94	0,76	1,87
Cold water temperature (${ }^{\circ} \mathrm{C}$)	6,5	5,6	6,5	10,2	13	13,9	14,3	15,8	13,2	9,8	8,5	5	10

- Solar energy contribution (Energy savings in kWh/year): 17546 kWh/year
- Yearly Basis: 5 FT STE units' full potential = $\mathbf{1 7 5 4 6} \mathbf{~ k W h}$ /year (relating to a specific simulation case)
cf. it corresponds to 11054 kWh /year useful solar energy (depends on distance, insulation etc. / simulation from an average case)
Daily energy consumption saving: 17546 kWh/year / 365 days $=\mathbf{4 8 . 1} \mathbf{~ k W h} /$ day
- Savings on energy consumption (in $€$): $3685 €$ EXCL. TAX/year
cf. Given that, with energy waste and to heat 900 L of water, the energy saving accounts for $17546 \mathrm{kWh} / \mathrm{year} \times 0.21 € / \mathrm{kWh}=3684.66 € / \mathrm{year}$
- Remaining share of the standard energy used (per year): $3659 € /$ year (50%; 17424 kWh/year)

In \%: solar thermal energy represents 50\% here so, remaining share of 50\%
In kWh: 34 970-17546=17 $\mathbf{4 2 4} \mathbf{~ k W h} /$ year

- In €: 17424 kWh/year x $0.21 € / \mathrm{kWh}=\mathbf{3} 659.04 € /$ year
- Remaining emission of CO2: 7945 kg CO2 (CO2 reduction up to 8001 kg CO2)
cf. $17424 \mathrm{kwh} /$ year $\times 0.456 \mathrm{~kg}$ CO2 $=7945,344 \mathrm{~kg}$ CO2

Hyp = No AIDS

- Previsionnal Cost (total - subsidies): $25000 €$
cf. cost of equipment \& installation + site preparation - potential aids = previsional cost
- Cost of the equipment \& installation: $20000 €$

Notes: $3829 €$ for one stainless steel unit + installation expenses $=5000 € /$ unit $/ 4$ units $\times 5000 € /$ unit $=20000 €$

- Cost of the site preparation: $5000 €$
cf. in average if not done personally by the holder
- Aids and subsidies available: $0 €$
cf. average grant $=\mathrm{XXX} \% ; \mathrm{X} 1 \times \mathrm{X} 2=\mathrm{XXX} €$ in the event of approval by regulating authorities
OPTIONAL COST: monitoring $=1200 €$ (equipment) $+1200 €$ (installation) $+38 € /$ year (RESOL subscription)
- Financial Package : $3313 € /$ year for 10 years (in average)
cf. Total - subsidies ; cash + financial loan (= duration + annuity)
- Previsionnal cost $=$ financial loan $=25000 €$
- Duration: 10 years / Loan rate $=\mathbf{6 . 6 \%}$ (with yearly increase) / STE Durability = + $\mathbf{3 0}$ years
=> $\mathbf{2 5} \mathbf{0 0 0 €} \mathbf{/ 1 0} \mathbf{1 0}$ years $=\mathbf{2 5 0 0} € /$ year ; taking into account the loan payment: $\mathbf{3 3 1 3} € /$ year (in average)
- Return on investment (global expense / annual savings): 6 years \& 9 months
- Global expense = $\mathbf{2 5 0 0 0 €}$
- Annual energy savings = $\mathbf{3} \mathbf{6 8 5}$ € per year during 30 years so in total : $\mathbf{3} \mathbf{6 8 5}$ €/year x 30 years = $\mathbf{1 1 0} 550$ €
- ROI $=25000 € / 3685 €=6.78$ years
- ROIC $=3685 € / 25000 €=14.74 \%$
- Yearly Earnings (Annual savings and yearly loan payment): $372 € /$ year (for 10 years, then $3685 € /$ year)
cf. good if savings > loan
- Annual savings = $\mathbf{3 6 8 5 €}$
- Yearly loan payment = $\mathbf{3} 313$ €
- Difference = 3685-3 $313=\mathbf{3 7 2} € /$ year of earnings during the $\mathbf{1 0}$ year-loan period / after = $\mathbf{3} \mathbf{6 8 5} € /$ year

	Year	1)	2	3)	$4{ }^{4}$	5	6	7	8	9	10	11.	12	13)	14)	15	16	17	18	19.	20
1	Costs without STE	7384	7858	8408	8996	9626	$10300 \mid$	11021	11793	12618	13501	14466	15458	16540	17697\|	18936	20262	21680	23198	24822	26559
2	Loan repayment	3316	3316	3316	3316	3316	3316	3316	3316	3316	3316	0	0	0	0	0	0	0	0	,	0
3	Gas remaining to buy	3659	3915	4189	4483	4796	5132	5491	5876	6287	6727	7198	7702	8241	8818	9435	10096	10802	11558	12368	13233
4	System maintenance	0	0	0	0	0	200	206	212	219	225	232	239	246	253	261	269	277	285	294	303
5	Costs with STE	6975	7231	7505	7798\|	8112	8648	9013	9403	9821	10268	7430\|	7941	8487	9071)	9696]	10364	11079	11844	12661	13536
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	Enegy saving (1.5) $\mathrm{CHT} / \mathrm{Y}$	369	627	903	1198	1514	1652	2008	2389	2797	3233	7016	7517	8053	8626	9240	9897	10601	11354	12160	13023
7	Energy saving 6HT/m	31	52	75	100	126	138	167	199	233	269	585	626	671	719	770	825	883	946	1013	1085

Network of (potential) installers: EnerGlaze, Glenergy, Clean Energy Ireland, Alternative Energy Ireland, Comet Renewable Ireland, Home \& Agri

- Legislation for installation/Procedures and precautions: since late 2022, planning permission on plants under $300 \mathrm{~m} \hat{A}^{2}$ not necessary (an exemption certificate will be required), except in locations within 5 Km of airports or helipads

RELEVANT REMARKS \& COMMENTS

Hyp = 30\% AIDS

- Previsionnal Cost (total - subsidies): $19000 €$
cf. cost of equipment \& installation + site preparation - potential aids = previsional cost
- Cost of the equipment \& installation: $20000 €$

Notes: $3829 €$ for one stainless steel unit + installation expenses $=5000 € /$ unit / 4 units $\times 5000 € /$ unit $=20000 €$

- Cost of the site preparation: $5000 €$
cf. in average if not done personally by the holder
- Aids and subsidies available: $6000 €$
cf. average grant $=30 \% ; 0.3 \times 20000=6000 €$ in the event of_qpproval by regulating authorities OPTIONAL COST: : :
- Financial Package : $2520 € /$ year for 10 years (in average)
cf. Total - subsidies ; cash + financial loan (= duration + annuity)
- Previsionnal cost $=$ financial loan $=19000 €$
- Duration: 10 years / Loan rate $=\mathbf{6 . 6 \%}$ (with yearly increase) / STE Durability = +30 years
=> $19000 € / 10$ years = $1900 € /$ year ; taking into account the loan payment: $\mathbf{2 5 2 0} € /$ year (in average)
- Return on investment (global expense / annual savings): 5 years \& 1,5 month
- Global expense = $19000 €$
- Annual energy savings = $\mathbf{3} \mathbf{6 8 5}$ € per year during 30 years so in total : $\mathbf{3} \mathbf{6 8 5}$ €/year x 30 years = 110550 €
- ROI = $19000 € / 3685 €=5.16$ years
- ROIC $=3685 € / 19000 €=19.4 \%$
- Yearly Earnings (Annual savings and yearly loan payment): $1165 € /$ year (for 10 years, then $3685 € / y e a r$)
cf. good if savings > loan
- Annual savings $=\mathbf{3 6 8 5} €$
- Yearly loan payment = 2520 €

○ Difference = $3685-2520=1165 € /$ year of earnings during the $\mathbf{1 0}$ year-loan period / after = $\mathbf{3} \mathbf{6 8 5}$ €/year

	Year	$1)$	2)	3]	4)	5	6	7	8]	9	10\|	11)	12	13)	14.	15)	16	17)	18.	19	20
1	Costs without STE	7344	7858	8408	8996	9626	$10300 \mid$	11021	11793\|	12618	13501	14446	15458	16540	17697\|	18936	20262	21680	23198	24822	26559
2	Loan repayment\|	2520	2520	2520	2520	2520	2520	2520	2520	2520	2520	0	0	0	0	0	0	0	0	0	0
3	Gas remaining to buy	3659	3915	4189	4483	4796	5132	5491	5876	6287	6727	7198	7702	8241	8818	9435	10096	10802	11558	12368	13233
4	System maintenance	0	0	0	0	0	200	206	212	219	225	232	239	246	253	261	269	277	285	294	303
5	Costs with STE	6179	6435	6709	7002	7316	7852	8217	8608\|	9025	9472\|	7430	7941]	8487	907]	9696	10364	11079	11844	12661	13536
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\bigcirc	Enegy saving (1.5) $6 \mathrm{HT} / \mathrm{M}$	1165	1423	1699	1994	2310	2448	2804	3185	3593	4029	7016	7517	8053	8626	9240	9897	10601	11354	12160	13023
7	Energy saving $\mathrm{CHT} / \mathrm{m}$	97	119	142	166	193	204	234	265	299	336	585	626	671	719	770	825	883	946	1013	1085

Network of (potential) installers: EnerGlaze, Glenergy, Clean Energy Ireland, Alternative Energy Ireland, Comet Renewable Ireland, Home \& Agri

- Legislation for installation/Procedures and precautions: since late 2022, planning permission on plants under $300 \mathrm{~m}^{2}$ not necessary (an exemption certificate will be required), except in locations within 5 Km of airports or helipads

RELEVANT REMARKS \& COMMENTS

