Scenarios for implementation of phosphorus recovery in Switzerland
Using data from pilot and production plants
Phos4You final conference, Essen & online, 22-23 September 2021
A. Nättorp, M. Mahler, D. Cairoli, M. Jutz, School of Life Sciences, FHNW
Outline

1. Swiss context
2. How were the scenarios developed?
3. Pros and cons of the scenarios
4. Conclusion
Phosphorus in Switzerland

Updated from: Nättorp, Jutz, ESPC3 2018
Swiss context

Legislation
• VVEA- recovery from sludge and meat and bone meal
• Implementation aid 50% recovery until 2026
• (validated) Vision SwissPhospor 75% until 2036
• Minrec- fertilizer limits, stricter than EU/DE

Infrastructure
• 180’000 t sludge DM (municipal and industrial)
• Sludge incinerated, 63% in SIP
• Hardly any fertilizer production
Northwestern Switzerland

- Northwestern Switzerland
 - 7% of Swiss area
 - 17% of Swiss population
 - 24% of Swiss sludge production
 - 38% of Swiss sludge disposal

Legislation and infrastructure similar
Scenarios applicable to Switzerland
Scenario development

• Collect base data
 – Inventory of SIP of Switzerland
 – Inventory of sludge drying and cement works of Switzerland
 – Sludge balance NWCH
 – Suitable technologies

• Develop scenarios
 – Draft scenarios and target criteria with stakeholders
 – Validation workshop
 – Evaluation
 – Validation workshop for finished scenarios
Sludge balance

- 180% capacity
- Replacement SIP next ~15y

⇒ Flexibility recovery: technology & site
Technologies

• Technology selected and described for ministry of Northrhine-Westfalia MUNLV
 – TRL
 – Technology provider
 – European experience ➔ publication pending

• Swiss context
 – Swiss target criteria
 – Cost updated
 • Bigmac-Index
 • Swiss disposal
 – Technologies
 • Less because of contaminants limits and yield requirement
 • New Swiss experiences

1 EcoPhos®
2 EuPhoRe®
3 PARFORCE
4 Phos4Life
5 PhosForce
6 Pyrophos
7 REALphos
8 Stuttgarter
9 ZAB/PHOS4green
Scenarios for recovery and disposal

Process step 1

1. Mineralization Status Quo
2a. Mineralization SIP
2b. Red.-Oxidizing- Mineralization
3a. Reducing-Oxidizing Mineralization
3b. Mineralization SIP
4. Extraction from sludge

Process step 2

Extraction
Extraction abroad
Extraction
Acidification
Cement works/MSWI
Scenario Evaluation - high influence of technology choice

<table>
<thead>
<tr>
<th>Economic efficiency</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment costs</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Operating costs</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Revenue process output</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental impact</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon footprint of phosphorus recovery process</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Removal of pollutants (heavy metals)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Waste quantity:</td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
<td>T4</td>
<td>T5</td>
<td>T6</td>
<td>T7</td>
<td>T8</td>
<td>T9</td>
</tr>
<tr>
<td>landfill category B</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>heavy metal concentrate</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sustainability</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery rate</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Contribution to closing the P cycle in Switzerland and in agriculture</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Phosphate solubility in neutral ammonium citrate (NAC)</td>
<td>5</td>
<td>No fertilizer</td>
<td>No fertilizer</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disposal safety</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Readiness Level (TRL)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Experience in Swiss project</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Mineralization status quo and recovery open until 2026

- Less cost with later implementation
- More technology experience on market
- Combine with disposal renewal
- Less partners for cooperation
Mineralization in SIP
Extraction of P from the ash

- High removal of pollutants
- High recovery rate and plant availability
- Closure of P cycle in Switzerland and in agriculture
- Complex processes with likely difficulties for first movers
- Limited Swiss experience
Mineralization in SIP extraction of P from the ash

...extraction abroad

• Requires stable cooperation partners
• Comparable cost
• German market w. additional potentially better options in SIP in Red.-Oxidizing mineralization
• Today less experience and thus more risk than with SPI.
• No known advantages in cost or environmental impact.
Reducing-oxidizing mineralization or acidification to increase of plant availability

- Relatively simple processes
- Rather positive warming potential
- Little landfilling
- High recovery rate
- Closing of P cycle difficult in Switzerland because of diluted fertilizer product
- Challenge: low contaminant input mix (e.g. MBM) to fulfill Swiss contaminant limits.
Extraction from sludge
Mineralization in cement plant or MSWI (or SIP)

- High removal of pollutants
- No landfill needed if combined with cement works
- Low recovery rate
- Low output revenue
- No (positive) Swiss experience
Conclusion

• Recent, reliable data with all relevant process types
• NWCH disposal renewal gives large flexibility for disposal- recovery combinations
• No obvious best choice, stakeholder weighting of criteria decisive
• Scenario choice has considerable impact, e.g. 22 MEUR OPEX/a, 700 t P/a
The circular phosphorus future is wide open, stakeholder initiative is key