EuPhoRe-Process – Experiences and deployment’s Potential

Essen & online, 22 - 23.09.2021 | Phos4You final conference

Frank Zepke (EUPHORE), K.-Georg Schmelz, Daniel Klein
(EMSCRHERGENOSSENSCHAFT/LIPPEVERBAND)
EuPhoRe-Process – Experiences and deployment’s Potential

Content

1. The EuPhoRe technology
2. The EuPhoRe pilot plant in Dinslaken
3. Operational experience, problems, optimisations
4. Results
5. Examples industrial scale
6. Outlook and potentials
7. Stand-alone or combination with waste incineration?
8. Economic aspects
EuPhoRe-Process – Experiences and deployment’s Potential

1. The EuPhoRe technology

Dewatered Sewage sludge + Additives

Energy gas / flue gas

Step 1: Thermal reduction, incl. sludge drying
650 – 750 °C

Step 2: Thermal Oxidation
850 – 1.000 °C

Rotary kiln

Thermal post combustion

Flue gas cleaning

Flue gas 900°C, 6-8% O₂

Phosphate / P-fertiliser
2. The EuPhoRe pilot plant in Dinslaken

Dewatered sludge input

Combustor (process heat)

Chimney

Combustor (post combustion)

Flue gas cleaning (textile filter)

Adsorption agents (Ca(OH)$_2$)

Additives (MgCl$_2$)

Ash output

Rotary kiln
2. The EuPhoRe pilot plant in Dinslaken

Ready for startup in May 2019
3. Optimisations at the pilot plant (examples)

- Discharge system of the sludge storage
- Conveyor belt: gradient and speed
- Insulation of the rotary kiln
- Changing the burners
- Dosing system of the adsorbent material
- Adjustment of programming
- ...

All pictures: L. Pamuk / Emschergenossenschaft
4. Results: Heavy metals in the sewage sludge ash (SSA)

<table>
<thead>
<tr>
<th>Heavy metals</th>
<th>SSA 3% (March 2021)</th>
<th>SSA 6% (April 2021)</th>
<th>Limit (German Fertiliser Ordinance DüMV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>10</td>
<td>9,3</td>
<td>40</td>
</tr>
<tr>
<td>Pb</td>
<td>34</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>Cd</td>
<td><0,4</td>
<td><0,4</td>
<td>1,5</td>
</tr>
<tr>
<td>Cu</td>
<td>940</td>
<td>780</td>
<td>900</td>
</tr>
<tr>
<td>Ni</td>
<td>89</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>Zn</td>
<td>2100</td>
<td>1400</td>
<td>4000</td>
</tr>
<tr>
<td>Hg</td>
<td><0,05</td>
<td><0,05</td>
<td>1</td>
</tr>
<tr>
<td>Tl</td>
<td><0,4</td>
<td><0,4</td>
<td>1</td>
</tr>
</tbody>
</table>
4. Results: Pot trials

Harvest 5:
O-Control (above)
EGLV-ash 6% (below)

Source: HGoTech GmbH
4. Results: Grinding and granulation

Source: Eirich GmbH

Source: Lösche GmbH
5. Examples industrial scale: Oftringen and Mannheim

Oftringen:
- Thermo-chemical treatment for 30,000 t dewatered sewage sludge per year
- Dry Matter = 22-32%
- Commissioning 1992
- EuPhoRe-Process 2016

Mannheim:
- Thermo-chemical treatment for 135,000 t dewatered sewage sludge per year
- Dry Matter = 23-29%
- Expected commissioning 2022
6. Outlook and potentials

Autarkic plant for 85,500 t dewatered sludge per year
6. Outlook and potentials
Combination with waste to energy plant for 85,500 t dewatered sludge per year
7. Stand-alone or combination with waste incineration?

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autarkic Plant</td>
<td>+ Freely planning options on the free space</td>
<td>- Complete reinstallation of the flue and process gas line including cleaning</td>
</tr>
<tr>
<td></td>
<td>+ Shorter and simpler conveying routes possible</td>
<td>- no synergy effects can be used</td>
</tr>
<tr>
<td></td>
<td>+ Better logistics</td>
<td>- possibly more complex and expensive approval planning</td>
</tr>
<tr>
<td></td>
<td>+ Sufficient space required for future system expansions</td>
<td>- Significantly higher investment costs, since more equipment is required</td>
</tr>
<tr>
<td></td>
<td>+ Better control options with regard to temperature and O\textsubscript{2} content</td>
<td>- Significantly higher operating costs and more additional staff are required</td>
</tr>
</tbody>
</table>
7. Stand-alone or combination with waste incineration?

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination waste to energy (wte)</td>
<td>+ Very simple system structure</td>
<td>- Complex planning of the system integration</td>
</tr>
<tr>
<td></td>
<td>+ Low investment and operating cost</td>
<td>- Impairment of the operation of the waste incineration lines due to the renovation work</td>
</tr>
<tr>
<td></td>
<td>+ Cost savings through shared use of the existing infrastructure and staff</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Simplified approval planning</td>
<td>- slight reduction in the plant capacity for waste incineration, if the CO₂-neutral energy is not used</td>
</tr>
<tr>
<td></td>
<td>+ Entry of nitrogen and sulphate compounds reduces urea for flue gas cleaning and maintenance costs due to corrosion</td>
<td></td>
</tr>
</tbody>
</table>
8. Economic aspects

Scale-up study for 85.500 t/a dewatered sludge

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Autarkic Plant</th>
<th>Combination wte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial investment</td>
<td>25,0 – 30,0 Mio. €</td>
<td>approx. -30 %</td>
</tr>
<tr>
<td>Opex</td>
<td>2,8 - 3,8 Mio. €/a</td>
<td>approx. -30 to -50 %</td>
</tr>
<tr>
<td>Finance costs</td>
<td>1,0 – 1,5 Mio. €/a</td>
<td>approx. -30 %</td>
</tr>
<tr>
<td>Treatment costs</td>
<td>50 - 53 €/t dewatered sludge</td>
<td>27 - 29 €/t dewatered sludge</td>
</tr>
</tbody>
</table>

SS: sewage sludge
wte: waste to energy

Indicative pricing as per September 2021 and subject to volatility in raw material market pricings and changing financing costs
Thank you for your attention!