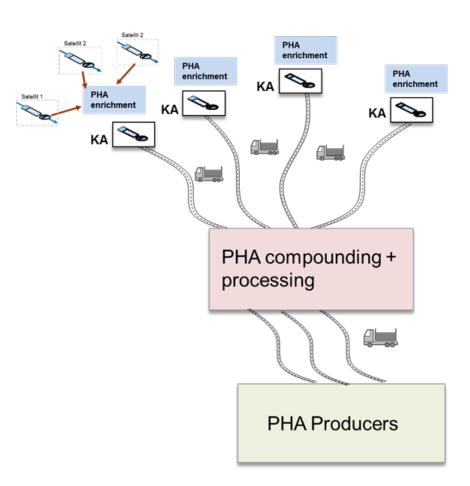


Economic aspects of PHA production

Inka Hobus, Gerd Kolisch Wupperverbandsgesellschaft für integrale Wasserwirtschaft

Agenda



- PHA-Production from municipal waste water
 - Concept for PHA-production from municipal waste water in Scottland
 - Economics
- PHA-Production from industrial streams
 - Potential of PHA-production in NWE from the brewery und juice industry
 - Implementation of a PHA-enrichment plant at a production site of brewery industry
 - Economics & acceptance

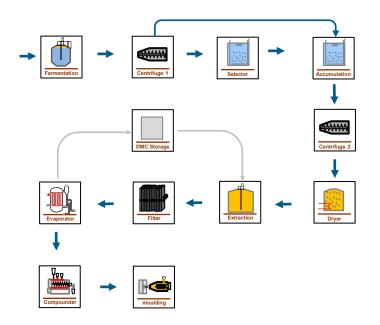
PHA-Production: Primary sludge

- PHA-production is economical feasable with primary sludge from two mio. PE (result from technical and economical assessment)
- Combination of different STPs necessary
- Finding of suitable location with GIS-tool
- Development of different concepts with local/regional aspects is required

PHA-concepts: pros & cons

	primary sludge transport		PHA rich biomass transport			
	One central plant	One central plant One decentral PHA- enrichment system	dewatered PHA rich biomass transport	dried PHA rich biomass transport	Remarks	
Specific investment cost	++	+	-			
Transport cost		•	+	++		
Free capacity of original digesters	central plant: PS supplier: +	central plant: - PS supplier: + PHA-rich biomass supplier:-	central plant: + PHA-rich biomass supplier:+	central plant: + PHA-rich biomass supplier:+	assuming that digesters exist in all plants	
Biogas production	central plant: ++ PS supplier:	central plant: + PS supplier: PHA-rich biomass supplier:+	central plant: - PHA-rich biomass supplier:-	central plant: - PHA-rich biomass supplier:-		
Nitrogen load in reject water from digesters	central plant: PS supplier:+	central plant: - PS supplier: + PHA-rich biomass supplier:-	central plant: + PHA-rich biomass supplier:+	central plant: + PHA-rich biomass supplier:+		

PHA-production central/decental

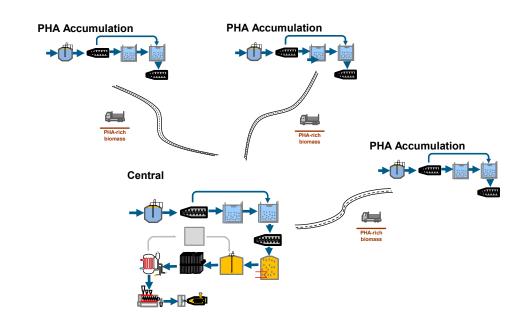

Concept 1:

Central: PHA-enrichment, extraction &

compounding

Transport of primary sludge

Dry matter: 5%


Concept 2:

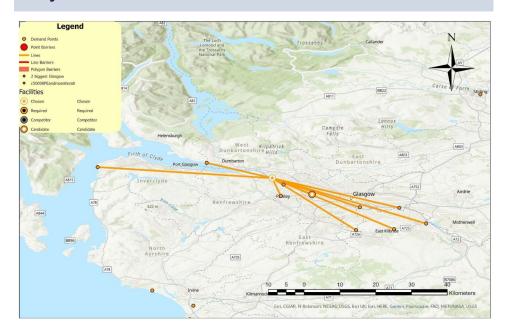
Central: PHA extract. & compounding

decentral: PHA-enrichment

Transport of PHA-rich biomass

Dry matter: 30%

PHA-Production: e.g. transports

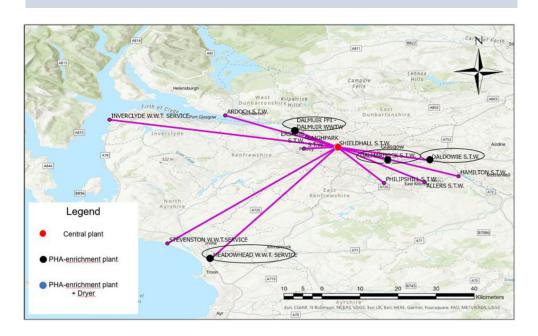

Concept 1:

Central: PHA-enrichment, extraction &

compounding

Transport distance: 320,000 km

Drymatter: 5%


Concept 2:

Central: PHA extract. & compounding

decentral: PHA-enrichment

Transport distance: 11,000 km

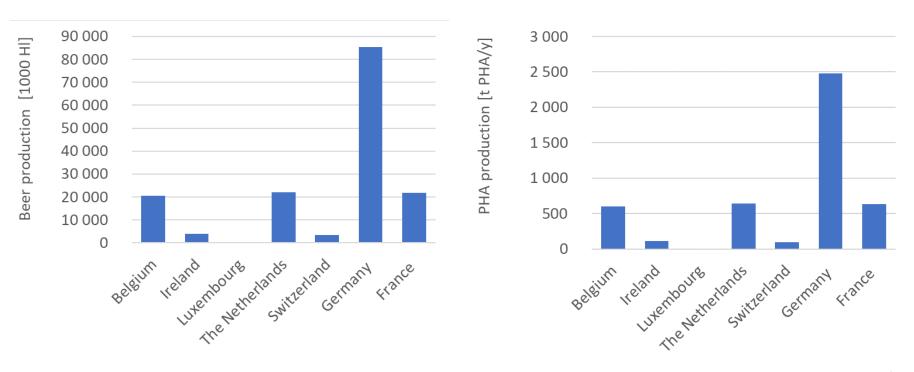
Drymatter: 30%

Economics: annual costs

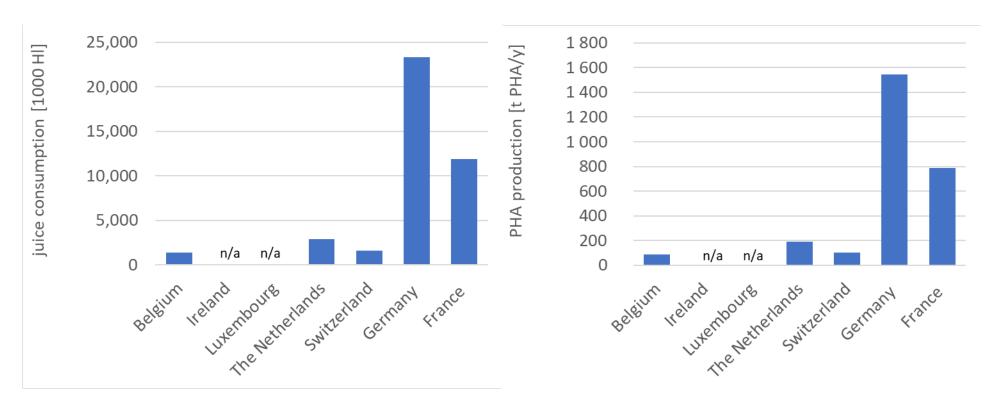
	Unit	Concept 1: PS-Transport	Concept 2: PHA-rich biomass transpost
Capex	[€/y]	3,816,100	7,174,000
Opex excluding transport	[€/y]	20,374,600	24,465,800
Transport	[€/y]	3,131,800	171,200
Annual cost	[€/y]	27,322,500	31,811,000
PHA production	[tons/y]	5,610	5,120
specific cost	[€/kg PHA]	4.87	6.21

hint: market price renewable raw material PHA from about 4 €/kg

PHA-Production: beer & juice



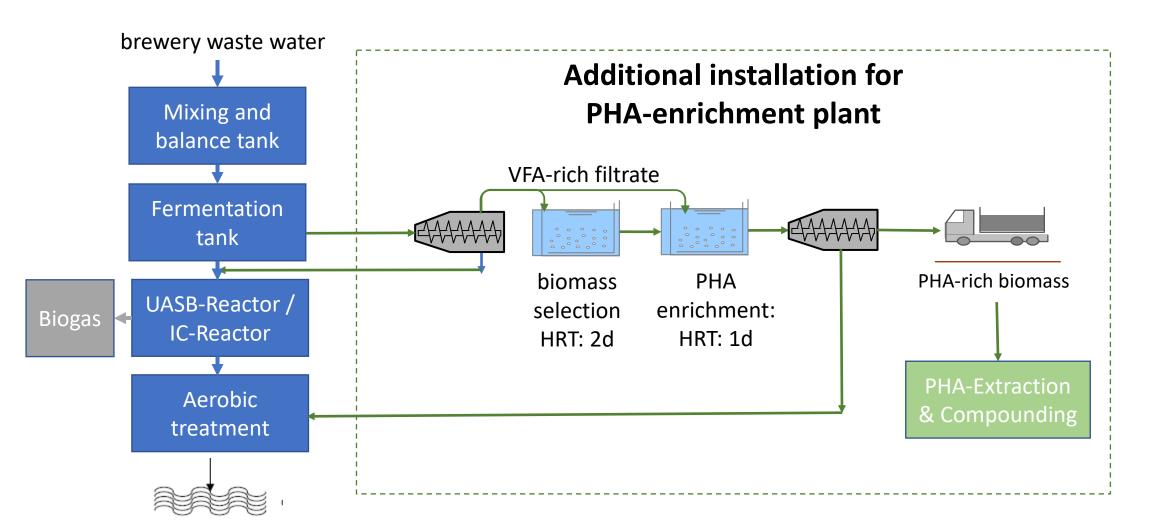
Potential PHA-Production: brewery industry NWE



Reference: https://brewersofeurope.org/site/ mediacentre/index.php?doc_id=1007&cla ss id=31&detail=true

- Yield: PHA production from brewery industry: 29 g PHA/hl beer
- PHA production in NWE from brewery industry: 4,000 t PHA/y

Potential PHA-Production: juice industry NWE



- Yield PHA production from juice industry: 66 g PHA/hl juice
- PHA production in NWE from juice industry: 2,700 t PHA/y

PHA-enrichment plant at a brewery

Economics: Next steps

- Design for the PHA-enrichment plant at a brewery and juice production site
- Estimation of the costs for installation and operation at the production sites

• Survey among consumers, juice and brewery industry on the acceptance of implementation & products from waste streams

Consumer

Consumer: https://www.umfrageonline.com/c/annrrukt

Brewery industry: https://www.umfrageonline.com/c/ika37mes

Juice industry: https://www.umfrageonline.com/c/vyugr7iz

Wupperverbandsgesellschaft für integrale Wasserwirtschaft mbH

