

H2 Refuelling Station

2023.06.29

About Port Oostende

- In just over ten years, Port Oostende has become a major hub for the offshore wind business, with 2.2 GW installed of operational capacity in the Belgian North Sea.
- Active maintenance of those parks out of Port Oostende with crew transfer vessels and service operating vessels
- With more than 800 people directly employed in the O&M business for the offshore wind in Oostende.

*Green energy entrepreneurs at heart.

EXTENSION BELGIAN MARINE SPATIAL PLAN

+3,6 GW Installed 2030

Crew Transfer Vessels

Infra - O & M

SOV (Service Operating Vessels) - hotelvessels

Reducing the carbon footprint of an offshore windfarm

- The O&M activities in the offshore wind industry have today a **considerable carbon footprint**
 - The vast majority of specialized vessels for offshore wind installation, operation and maintenance are driven by internal combustion engines, mainly using fossil fuel, for propulsion.
 - This is still the case for most of the recently build Crew Transfer Vessels (during the last 5 years), which will be in use for at least another 10 to 15 years
 - For CTVs the priorities are speed, reliability and safety of transfer, while incentives on CO2 emission reduction are low, and so far little or no requirements were imposed as permit requirement or as award criteria
- Our existing BE wind farms
 - We estimate that the O&M operations and maintenance logistics for the existing BE windfarms consume
 7.5 9 million litre of diesel fuel per year, generating 20000 24000 tons of CO2 (approx. the equivalent of 3000 cars)
 - => average of 3500 to 4000 litre / year / MW of installed capacity

Location

ISHY – Hydrogen Refuelling Station (HRS)

Status of the project

- Feasibility study:
 - Explore the potential future demand and related business model for hydrogen in the harbor of Oostende
 - Technical concept, safety screening for suitable locations, preferred location identified
- Realization of the facility:
 - ✓ Detailed engineering completed
 - Safety and implementation study completed
 - ✓ Permit ("Omgevingsvergunning") awarded on 25.08.2022
 - ✓ Procurement, realization and testing all contracts signed
 - Assembly of main components, civil works and construction of the HRS ongoing
- Planned capacity and phasing:
 - Phase 1: 600 kgH2/day (R&D project), 4 vessels @150kg H2/day
 - Phase 2: 1600 kgH2/day, expected within 5 years, investment not part of R&D project
 - Phase 3: 3000 KgH2/day, expected within 10 years, investment not part of R&D project

Crew transfer Vessel

Dispenser – Refuelling a moving vessel

H2 refuelling station – Power installed

12 Mass Flow		1544.648649	kg/day											
	H-Drive Parameters	Inlet Pressure (Bar)	Interstage (Bar)	Outlet Pressure	Flowrate	Flowrate (kg/hr)	Running Time	Hyd Pressure	Hyd Power	No. of	Hyd Power	Hyd Flow	Process Cooling	Total Process
													Pequired Per	Cooling
													Required Fer	Required Per
				(Bar)	(Nm3/hr)		(Hours)	(Bar)	(kW)	Boosters	(kW)	(l/min)	Booster (kW)	System (kW)
		99	308	500	357.2	32.18018018	24	248	73	2	146	140	37.8	60.48
		99	308	500	357.2	32.18018018	24	248	73	2	146	140	37.8	60.48
Average					357.2	32.18018018	24	248	73	2	146	140	37.8	60.48

	Maximum	Average Running	HPU Installed Power
Total Hydraulic Power (kW) / Running (kW)	146	97.3236	150 kW
Total Process HPU Cooling Required (Per HPU / Total)	20	40	
Total Process Cooling (kW)	100.48		Chiller Installed
Total Process Electrical Power Installed (kW) / Running (kW)	49.53004953	25.4	ICE 116 42 kW
Total Dispense Cooling Electrical Power (kW) / Running (kW)	0	0	0 kW

	Maximum Installed	Average Running	Maximum Running	
Total Electrical Power Required (Installed / Running)	193.285	122.7236	195.5300495	kW
Safety Factor (10%)	212.6135	134.99596	215.0830545	kW
Total + Safety Factor (Installed / Running)	212.6135	134.99596	215.0830545	kW

Hydraulic Power	1.512166797	
Process Power	0.394652856	
Dispense Power	0	
Ancillaries	0.019965705	
Total kWh/kg	1.926785358	kWh/kg Total (Running)

Ancillaries	kW
Extractor Fan (x2)	0.75
Fire System	0.25
Lights (x2)	0.03
PLC	0.025
HMI (x2)	0.05
Solenoids (x10)	0.06
TT (x10)	0.06
PT (x10)	0.06
Total	1.285

75 Kw Per booster – Total 150 Kw

50 Kw for the process chiller

10 Kw for ancillaries. – Air Compressor and PLC / Lights etc.

Total Installed 210 kW

HPU TO Cooling:- 8 kW for 30 kW for 55 kW motor. 12/55 For 75 kW 16/75

CO2 Chiller Running

65

150 kW Installed

Process Chillers

Model ICE		003	005	007	010	015	022	029	039	046	057	076	090	116	150	183	230	310	360
Cooling capacity	kW	2,5	5,1	7,0	9,5	14,3	21,8	28,1	38,2	45,2	56,4	76,0	90,2	115,5	149,2	182,3	227,9	309,1	359,7
Compr. abs. power	kW	0,70	1,40	2,0	2,27	3,43	5,19	5,66	7,69	10,1	12,3	15,4	20,3	24,9	30,8	40,1	51,4	46,4	81,5
2 Cooling capacity	kW	1,8	3,8	5,2	7,0	10,6	16,2	20,8	28,4	33,8	42,1	56,5	67,1	86,4	110,9	135,4	165,3	223,7	259,1
Compr. abs. power	kW	0,62	1,31	1,67	2,16	3,24	4,46	5,93	8,26	10,6	13,1	16,4	21,2	25,8	33,5	42,1	54,3	66,4	83,7
g Cooling capacity	kW	/			on request		29,6	39,5	47,6	59,0	79,8	97,5	120,1	156,7	195,0				
8 Compr. abs. power	kW	N.A.		5,16			7,13	9,04	11,0	13,8	17,3	22,6	27,6	34,8	on	N.A.			
Cooling capacity	kW			21,9			29,3	35,3	43,9	59,1	72,3	89,4	116,1	144,6	request		л.		
⁸ Compr. abs. power ^c	kW							5,17	7,17	8,93	11,1	13,9	17,0	22,8	27,8	34,4			
Compressors																			
Compr/circuits				1/1				2/2											
Max abs. power - 1 compr.	kW	0,7	1,5	2,0	3,0	4,3	6,9	7,8	11,1	13,7	16,8	11,1	13,7	16,8	11,1	13,7	16,8	23,3	28,7
Axial fans																			
Quantity	n*	1							2			3			2		3		ŧ
Max abs. power - 1 fan	kW	0,12	0,12	0,14	0,14	0,61	0,61	0,78	0,61	0,61	0,61	0,78	0,78	0,78	2,0	2,0	2,0	2,0	2,0
Air flow	m⁺/h	2300	2300	4400	4100	7100	6800	9200	12400	12000	17400	25500	25000	26400	47000	46000	66000	88000	86000
Centrifugal fans																			
Quantity	n°							2	2	2	3	3	3	3	3	3			
Max abs. power - 1 fan	kW		N					1,1	1,1	1,1	1,1	1,5	1,5	1,5	3	3	on		
Air flow	m∙/h		in.	л.		on request		9200	12400	12000	17400	25500	25000	26400	47000	46000	request	IN.	.a.
Head pressure	kPa							200	180	160	200	100	100	100	180	180			
Water-cooled version																			
Condenser water flow ¹	m⊮h							2,57	3,94	5,36	7,79	10,84	10,96	16,16	18,88	29,17	on		
Connections (infout)		-		N.A.		on request		1.14*	114=	1.14**	1.16**	1.14**	1.14*	1.14*	1.14*	1.14*	request	N.	n.

HRS challenges

- Market
 - Very immature market and technology (hybrid marine propulsion), impossible to forecast
 - $\circ~$ Many recently built CTVs, still using fossil fuel technology
 - o Zero-emission difficult to achieve in offshore wind (speed and distance)
 - Lack of incentives on existing wind farms, requirements mostly on new projects
- Engineering first of a kind, no HRS experience in marine, higher quantity of H2
 - $\circ~$ No H2 industry-standards in marine environments, difficult certification
 - $\circ~$ Refueling a moving vessel laying at the quayside at 500bar pressure
 - $\circ~$ Much higher quantity of H2 compared with road transport
- Permit first of a kind
 - $\circ~$ Permit for the HRS was first of a kind for the local authorities
 - $\circ~$ Safety / risk difficult to assess
- Withdrawal of GEOaqua
 - GEO withdrew from the project after all contracts for the HRS were signed, and after we had agreed a long-term use contract for GEO's hybrid vessel in our wind farms
 - $\circ~$ Currently only 1 other hybrid vessel active in the port of Oostende

