GenComm Micro H2 Hubs

DR BODO GROß

IZES

SOLAR

H, BÍO BÍO H₂ BIO 50

Interreg

GenComm

North-West Europe

GENCOMM WP I2 SOLAR H₂ PRODUCTION AND REFUELLING STATION

GenComm Conference

Belfast, 31st May 2023

Dr. Bodo Groß; gross@izes.de

AGENDA

Hydrogen

GenComm Work Package I2: Solar Powered Hydrogen Production and Refuelling Station

Direct and Indirect Outcomes of GenComm

Conclusion

IZES GGMBH: LOCATION

Ministerium für Wirtschaft, Innovation, Digitales und Energie

- IZES is located in Saarbrücken, the Capital of the Federal State Saarland
- Approx. 90 km from the city of Luxembourg

IZES GGMBH

- Founded in 1999 as non-profite research
- Shareholders: Federal State Saarland (~70%), seve regional utilities, the University of Saarland and the Un of Applied Science Saarbrücken

Interre

Europe

organisat North-West

- Interdisciplinary team with educational background in engineering, law, economics, forestry, social and natural sciences
- 80 employees, including the administrative department as well as bachelor, master and PhD students

ORGANISATION CHART OF THE IZES GGMBH

Quelle: Mats Karlsson

IZES gGmbH

- GenComm Work Package I2: Solar Powered Hydrogen Production and Refuelling Station
- Direct and Indirect Outcomes of GenComm
- Conclusion

HYDROGEN – WHO ARE YOU?

1 3 Li 11	4 Be	 Alkalimetalle Übergangsmetalle Nichtmetalle Künstliche Lanthanoide Erdalkalimetalle Metalle Halbmetalle Edelgase Actinoide 											6 C 14	7 N 15	8 0 16	9 F	2 He 10 Ne 18
19 K	20 Ca	21 Sc	22 Ti	²³ V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	51 32 Ge	33 As	34 Se	35 Br	Ar 36 Kr
37 Rb	³⁸ Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	⁴⁶ Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	⁵⁶ Ba	57-71	72 Hf	73 Ta	74 W	⁷⁵ Re	⁷⁶ Os	77 Ir	⁷⁸ Pt	79 Au	⁸⁰ Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	85 At	86 Rn
87 Fr	⁸⁸ Ra	89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
			57 La	⁵⁸ Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	⁶⁵ Tb	66 Dy	67 Ho	⁶⁸ Er	69 Tm	⁷⁰ Yb	71 Lu
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Interreg North-West Europe

GenComm

Hydrogen is the No. 1!

Interreg | North-West Europe GenComm

Source: https://www.spektrum.de/periodensystem/wasserstoff/615188

HYDROGEN & FUEL CELL TECHNOLOGY RESEARCH AROUND THIRTY YEARS AGO

One major area of research was in the field of Proton Conducting Ceramics

- The Perovskite (ABX₃) family seemed to be a good candidate
- Barium Calcium Niobate

 (BaCa_{0,82}Nb_{0,18}O_{8,73} or BCN18) was
 handled as one of the most promising
 new membrane material for solid oxide
 fuel cells (SOFC)
- Why? The operating temperature of a SOFC using BCN18 is 300°C lower than using doped zirconia.

HYDROGEN AND FUEL CELL EUPHORIA AROUND TWENTY YEARS AGO

Interreg North-West Europe GenComm

HYDROGEN (TECHNOLOGY)-HYPE TWENTY YEARS AGO AND AT PRESENT

3 20% des Kraftstoffbedarfs aus alternativen Quellen (EU Ziel). Schätzungsweise 40 %

werden davon durch Wasserstoff abgedeckt.

sources (EU-target). Estimated 40% of it will

20% of fuel consumption from renewable

be covered by hydrogen.

Interreg North-West Europe

GenComm

(2) Wasserstoffabsatz 2,5% des Kraftstoffbedarfs entsprechend der Verkehrswirtschaftlichen Energiestrategie Hydrogen sales 2,5% of fuel sales according to the transportation energy strategy

 — 10% 100% --- Absatzerwartung Benzin und Diesel 80% - • 3 in Prozent (100% im Jahr 2000) Sales forecast for gas and diesel in percent (100% in the year 2000) 60% - · Absatzerwartung Wasserstoff in Prozent des Treibstoffabsatz 40% - • Sales forecast for hydrogen in percent of fuel sales (2) 20% -- • 1 0% 2020 2010 2015 2002 2005 Absatzprognose für Treibstoff Sales Forecast for Fuel

Source: Broschure Clean Fuel, Gesellschaft für Hochleistungselektrolyseure zur Wasserstofferzeugung mbH (GWH)

Exhibit 5 - Announced clean hydrogen production volume by pathway

Interreg

GenComm

North-West Europe

Cumulative production capacity, MT p.a. As of May 8, 2022

Preliminary studies or at press announcement stage

² Feasibility study or front-end engineering and design stage

^a Final investment decision has been taken, under construction, commissioned or operational

- IZES gGmbH
- Hydrogen

GenComm Work Package I2: Solar Powered Hydrogen Production and Refuelling Station

Direct and Indirect Outcomes of GenComm

Conclusion

GENCOMM WP I2

Work Package I2

 IZES was responsible for the construction of a solar powered hydrogen production and refuelling station

Why a Hydrogen Refuelling Station at IZES?

- In 2014 IZES build a quasi-autarkic solar powered charging station for Battery Electric Vehicles.
- Fuel Cell Electric Vehicles could be seen as the next evolution step of Battery Electric Vehicles.

GENCOMM WP I2

GenComm

Planned Design of the Solar Powered Hydrogen Refuelling Station

GENCOMM WP I2

Facts and Data of the Solar Operated Hydrogen Refuelling Station

- Location: Innovation Campus Saar, 66115 Saarbrücken, Altenkesseler Straße 17A1, Headquarter IZES gGmbH
- Energy supply: PV-Array with 30 kW peak power
- Containerised solution: two 20 feet container with a separated dispenser
- Hydrogen production: two different electrolyser (AEM and PEM) with a maximum H₂ production of 5 Nm³/h
- Hydrogen storage capacity: 58 kg at two different pressure levels 450/950 bar
- Gas quality: 5.0 or 99,999% or at least according to the fuel standard
- Suitable for 700 bar vehicles

GenComm

- Maximum refuelling time is less than 30 min
- Operation as a non-public research station

GENCOMM PARTNER MEETING #03; DECEMBER 2017, SAARBRÜCKEN

Source: IZES gGmbH

Introduction and welcome message by State Secretary Jürgen Barke (now Saarland's Minister for Economics, Innovation, Digital and Energy)

GENCOMM WP I2: PV ARRAY WITH APPROX. 30 KWP

North-West Europe GenComm

GENCOMM WP I2: HYDROGEN PRODUCTION AND REFUELLING STATION

GENCOMM WP I2: HYDROGEN PRODUCTION AND REFUELLING STATION

GENCOMM WP I2: MEETING #23; DECEMBER 2022, ST. INGBERT

GenComm

Digitales und Energie

SAARLAND

Welcome and

Secretary Elena

for Economics,

Energy

Introduction by State

Yorgova-Ramanauskas

Innovation, Digital and

20

from Saarland's Ministry

- IZES gGmbH
- Hydrogen
- GenComm Work Package I2: Solar Powered Hydrogen Production and Refuelling Station
- Direct and Indirect Outcomes of GenComm
- Conclusion

North-West Europe GenComm	W
• Ministerium für Wirtschaft, Innovation, Digitales und Energie	

GENCOMM WP I2: DIRECT OUTCOMES •

Direct outcomes

- Installation of the solar powered H₂ production and refuelling station
- Installation of the 30 kWp PV system, which delivers the green electricity to operate the H₂ production and refuelling station (HRS)
- Future usage of the HRS as a unique training facility or as showcase for educational topics; e.g. the certified TÜV course "Specialists for Hydroger Technologies"
- Establishing an excellent pan-European network in the field of hydrogen technologies → "The GenComm Family" and beyond!

Indirect outcomes

- GenComm was the first hydrogen project at IZES after the initial hype at the beginning of the new millennium
- After the launch of GenComm in 2017, more than ten hydrogen related projects were started at IZES and several more are currently in the application phase
 - TransHyde
 - HALLIE
 - SH2AMROCK
 - KoNSTanZE

- IZES gGmbH
- Hydrogen 🖗

- GenComm Work Package I2: Solar Powered Hydrogen Production and Refuelling Station
- Direct and Indirect Outcomes of GenComm
- Conclusion

CONCLUSION

GenComm was a very successful project!

Hydrogen may not be **the** only No. 1 but in any case an important pillar on our way to decarbonise the European energy economy in a sustainable way!

• Ministerium für Wirtschaft, Innovation, Digitales und Energie

Net Zero NW W SW S SE S

Thank you for listening!

Dr. Bodo Groß

<u>gross@izes.de</u>; +49 681 844972 51

26