

Compost in windrows before field application (Nick Corp)

Organic matter application to enhance soil health (United Kingdom)

DESCRIPTION

The addition of organic matter, such as compost, to soils on farms can enhance soil health with benefits for soil organisms, soil structure, carbon sequestration and plant production.

Application of organic matter to soils, in the form of compost, helps enhance soil organisms and structure for improvements in overall soil health. This technology has been applied to 36 hectares of a 300 hectare organic arable farm that practices a rotation of 2 years grass ley, followed by a winter cereal and then two spring cereals with cover crops in the period between the two spring crops. The technology has been trialed in the south of England (Berkshire) where the average annual rainfall is around 690 mm and the soil is mostly gravel, silt and clay soil with low organic matter – making it challenging to cultivate.

The practice has been to import certified green waste compost to apply to fields on a rotational basis before the winter crop, as it requires more nitrogen than the spring crops. The application was planned for this period in the rotation as spring spreading can damage the soil through compaction after the winter crop has been harvested. The sources of green waste varied, with 900 tonnes of composted PAS 100 certified green waste from a local waste company, and 500 tonnes of green waste from a local camomile producer, both in 2019/2020. The compost was stored in windrow heaps for 6 months on the grass leys turning once during this time. For the application, a contractor then used a spreader before soil cultivation for the winter crop. This technology is ongoing.

The primary aim of the application of organic matter is to improve soil fertility and the soil's health. This in turn results in better crops.

Challenges to overcome with this technology are issues with compaction from spreading activities and the cost of compost purchase and haulage. Compaction can be alleviated through autumn spreading, yet costs can be prohibitive. So, far the benefits of the technology application are limited as it will take a long time achieve the full impacts of increasing soil organic matter, especially in the soil type that is present on the farm, yet the hope is it will have a large impact in the future.

LOCATION

Location: Reading, Berkshire, United Kingdom

No. of Technology sites analysed: single

Geo-reference of selected sites
• -1.17672, 51.37333

Spread of the Technology: applied at specific points/ concentrated on a small area

In a permanently protected area?: No

Date of implementation: 2019

Type of introduction

through land users' innovation

as part of a traditional system (> 50 years)

during experiments/ research through projects/ external interventions

Compost in windrows before field application (Nick Corp)

Field of rye with compost application (Nick Corp)

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

✓ improve production

✓ reduce, prevent, restore land degradation

conserve ecosystem

protect a watershed/ downstream areas - in combination with other Technologies

preserve/ improve biodiversity

reduce risk of disasters

adapt to climate change/ extremes and its impacts

mitigate climate change and its impacts

create beneficial economic impact

create beneficial social impact

Land use

Land use mixed within the same land unit: No

Cropland

Annual cropping: cereals - oats, cereals - rye, cereals - wheat (spring), cereals - wheat (winter), fodder crops - grasses

Number of growing seasons per year: 1 Is intercropping practiced? No Is crop rotation practiced? Yes

Water supply

✓ rainfed

mixed rainfed-irrigated full irrigation

Purpose related to land degradation

prevent land degradation

reduce land degradation

restore/ rehabilitate severely degraded land adapt to land degradation

not applicable

Degradation addressed

physical soil deterioration - Pc: compaction

biological degradation - Bl: loss of soil life

SLM group

integrated soil fertility management

SLM measures

agronomic measures - A2: Organic matter/ soil fertility

TECHNICAL DRAWING

Technical specifications

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated: per Technology area (size and area unit: 36 hectares)
- Currency used for cost calculation: £GBP
- Exchange rate (to USD): 1 USD = 0.85 £GBP
- Average wage cost of hired labour per day: £150

- Establishment activities 1. Procurement of compost (Timing/ frequency: Spring)
- 2. Application of compost (27.4t/ha) (Timing/ frequency: Autumn)

Establishment inputs and costs (per 36 hectares)

Most important factors affecting the costs

The cost of contractor haulage and spreading, which is partly driven by current fuel costs.

Tr. 7	Unit	Quantity	Costs per Unit (£GBP)	Total costs per input (£GBP)	% of costs borne by land users
Fertilizers and biocides					
Compost purchase, haulage and spreading (£11 per tonne)	ha	36.0	303.0	10908.0	100.0
Total costs for establishment of the Technology				10'908.0	
Total costs for establishment of the Technology in USD				12'832.94	

Maintenance activities

NATURAL ENVIRONMENT

Average annual rainfall

< 250 mm 251-500 mm

✓ 501-750 mm

751-1,000 mm 1,001-1,500 mm

1,501-2,000 mm 2,001-3,000 mm

3,001-4,000 mm > 4,000 mm

Slope

flat (0-2%) gentle (3-5%)

moderate (6-10%)

rolling (11-15%)

very steep (>60%)

Agro-climatic zone

humid ✓ sub-humid

semi-arid arid

Specifications on climate

Average annual rainfall in mm: 693.0

hilly (16-30%) steep (31-60%)

✓ hill slopes footslopes ✓ valley floors

Landforms

ridges

Altitude

✓ 0-100 m a.s.l.

101-500 m a.s.l. 501-1,000 m a.s.l. 1,001-1,500 m a.s.l. 1,501-2,000 m a.s.l. 2,001-2,500 m a.s.l. 2,501-3,000 m a.s.l. 3,001-4,000 m a.s.l.

> 4,000 m a.s.l.

Technology is applied in

convex situations concave situations

✓ not relevant

Soil depth

very shallow (0-20 cm) shallow (21-50 cm)

moderately deep (51-80 cm) deep (81-120 cm)

very deep (> 120 cm)

Soil texture (topsoil)

plateau/plains

mountain slopes

coarse/ light (sandy ✓ medium (loamy, silty)

fine/ heavy (clay)

Soil texture (> 20 cm below surface)

coarse/ light (sandy)

medium (loamy, silty) fine/ heavy (clay)

Topsoil organic matter content

high (>3%) ✓ medium (1-3%)

low (<1%)

Groundwater table

on surface

< 5 m

5-50 m > 50 m

Availability of surface water

excess good

✓ medium

poor/ none

Water quality (untreated)

good drinking water

poor drinking water (treatment required) for agricultural use only

(irrigation) unusable

Water quality refers to: both ground and surface water

Is salinity a problem?

Yes ✓ No

Occurrence of flooding

✓ Yes

Species diversity

high ✓ medium

low

Habitat diversity

high

✓ medium

low

CHARACTERISTICS OF LAND USERS APPLYING THE TECHNOLOGY

Market orientation

subsistence (self-supply) ✓ mixed (subsistence/

commercial) commercial/ market

Off-farm income

less than 10% of all income

10-50% of all income > 50% of all income

Relative level of wealth

very poor poor

✓ average rich very rich

Level of mechanization

manual work animal traction

mechanized/ motorized

Sedentary or nomadic

✓ Sedentary

Semi-nomadio Nomadic

Individuals or groups

individual/ household groups/ community

cooperative employee (company, government)

Gender

women men

Age

children youth

middle-aged elderly

Area used per household

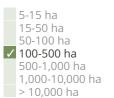
< 0.5 ha 0.5-1 ha

1-2 ha 2-5 ha

Scale

small-scale medium-scale ✓ large-scale

Land ownership

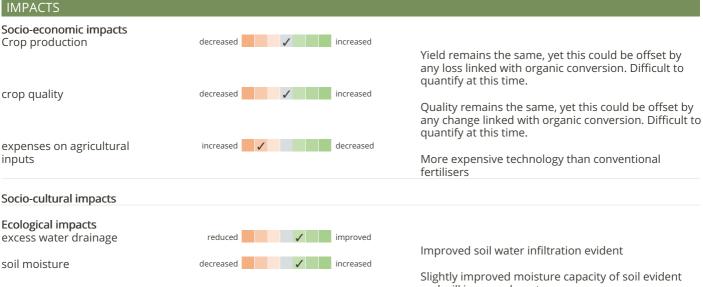

state company

communal/ village group

Land use rights

open access (unorganized) communal (organized)

✓ leased individual



Water use rights

open access (unorganized) communal (organized) leased individual

Access to services and infrastructure

recess to ser rices and initiastractare			_	
health	poor		/	good
education	poor		/	good
technical assistance	poor		/	good
employment (e.g. off-farm)	poor		/	good
markets	poor		/	good
energy	poor		/	good
roads and transport	poor		/	good
drinking water and sanitation	poor		/	good
financial services	poor		/	good

soil organic matter/ below

nutrient cycling/ recharge

soil crusting/ sealing

soil compaction

ground C

emission of carbon and greenhouse gases

increased / reduced

increased / reduced

✓ decreased increased

and will improve long-term

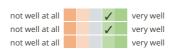
Slightly reduced soil crusting evident and will improve long-term

Slightly reduced soil compaction with more soil air space evident and will improve long-term

Improvements in available soil nutrients

Increased potential for carbon sequestration with addition of carbon rich green waste

Off-site impacts


COST-BENEFIT ANALYSIS

Benefits compared with establishment costs							
Short-term returns	very negative		/		very positive		
Long-term returns	very negative			/	very positive		

Benefits compared with ma	intenance costs		
Short-term returns	very negative	1	very positive
Long-term returns	very negative	1	very positive

CLIMATE CHANGE

Gradual climate change annual temperature increase annual rainfall increase seasonal rainfall increase

Season: winter Answer: not known

ADOPTION AND ADAPTATION

Percentage of land users in the area who have adopted the Technology

single cases/ experimental

1-10% 11-50%

> 50%

Of all those who have adopted the Technology, how many have done so without receiving material incentives?

0-10% 11-50%

51-90% **91-100%**

Has the Technology been modified recently to adapt to changing conditions?

✓ No

VINO

To which changing conditions?

climatic change/ extremes
changing markets
labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

- Good fertiliser option for organic system
- Improvements in soil health will benefit farm for many years

Strengths: compiler's or other key resource person's view

Sustainable method of soil health improvements and crop fertilisation

Weaknesses/ disadvantages/ risks: land user's view \rightarrow how to overcome

 Relatively expensive to implement → The farm is organically certified so costs offset from higher organic food prices as this technology fits within certification. Additional farm subsidy to support technology would also be beneficial in the future if policy changes.

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's view → how to overcome

- Expense to implement → Recognition through farm subsidy
- Have to take a long-term approach, this is not a quick fix
 → Set a long-term sustainability and soil health plan for
 repeated application management

REFERENCES

Compiler

Alan Radbourne

Date of documentation: July 1, 2021

Resource persons

Karen Fisher - land user Nicholas Corp - land user

Full description in the WOCAT database

https://qcat.wocat.net/en/wocat/technologies/view/technologies_5968/

Linked SLM data

n.a.

Documentation was faciliated by

Institution

- Soil Association (Soil Association) United Kingdom
- UK Centre for Ecology & Hydrology (CEH) United Kingdom

Project

• Éuropean Interreg project FABulous Farmers

Reviewer

Rima Mekdaschi Studer William Critchley

Last update: Aug. 16, 2021