

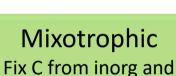
Wastewater treatment in Scotland

Capacity (PE)

- 0 50
- 51 500
- 501 5000
- 5001 50 000
- > 150 000

- 97% rural
- 1600 WWTPs capacity <500PE

- Implementing P recovery technologies in small-scale WWTPs faces several challenges:
 - P concentrations are lower than compared to large WWTPs
 - Remote accessibility, hence maintenance, robustness and operation constrains.
 - High variability in both flows and P concentrations



Microalgae technology: Chlamydomonas acidophila

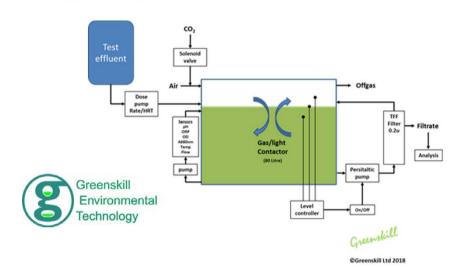
- Unicellular green algae
- It grows at pH values between 2 3
- It accumulates high concentrations of lutein (antioxidant)

Low Light

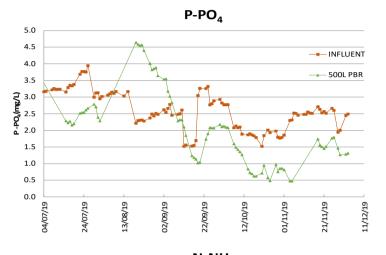
intensity

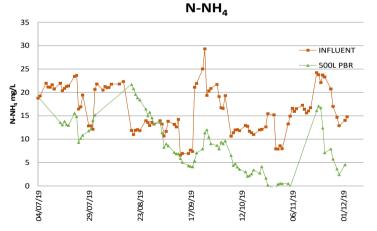
org sources

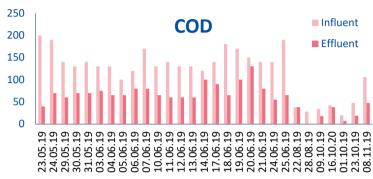
- Pharmaceuticals
- NH₄+



Wastewater Development Centre in Boʻness






- Chlamydomonas acidophila (pH 2-3)
- 75L and 500 L suspended cells PBR
- Treating effluent from primary sedimentation
- 6 months
- No aeration required
- Incorporates LED lighting and heat exchanger
- Biomass retention: TFF

P-recovery process results

RESULTS

- Recoveries/removals from primary effluent:
 - 50-75% PO₄
 - 75-100% NH₄
 - 50% COD
- ROBUST → maintained long term as mono-algal culture
- Easy to separate using tangential flow filtration → it did not foam or exhibit biofilm formation in the PBR
- This technology seems to be suitable as a secondary/tertiary treatment of wastewater for small WWTPs

Recovered product: microalgae biomass

4 g/L
[µalgae biomass]
in the photobioreactor

+ 0.5 g NaOH/L Sedimentation

4-6 % TS Liquid separation

90 % TS

Drying

Recovered product: microalgae biomass

Phos4You preliminary results

Quality assessment team (UGhent, INRAe, ERI, HVC, GCU)

- Corg. >15%
- TN = 6.2 %dm
- $P_2O_5 = 1.9 \% dm$
- Secondary macronutrients (MgO, CaO >1.5%) and specifically high Mg: P ratio
- contaminants, pathogens and persistent organic pollutants tested are lower than the limits defined in EU FPR 2019
 - Cu ~ 520 mg kg⁻¹. Limits:

PFC1 (A) Org fert: 300 mg kg⁻¹

PFC1 (B) Org Min fert: 600 mg kg⁻¹

PFC3 (A) Org soil improver: 300 mg kg⁻¹

PFC6 (A) Plant stimulant: 600 mg kg⁻¹

Conclusions

Chlamydomonas acidophila microalgae technology seems to be suitable for small WWTPs:

- robust (no foaming or biofilm formation)
- can be maintained long term as a mono-algal culture
- can recover P and N from WW with high variability of nutrients
- requires low light intensities to grow and consume nutrients
- produces microalgae biomass that could be distributed locally to support circular economy

University of Applied Sciences and Arts Northwestern Switzerland School of Life Sciences

